Практическое занятие #1. Сопряженное пространство

Курс: двухсеместровый. Семестр: весна.

Ключевые слова:

- линейная форма;
- коэффициенты линейной формы, теорема о задании линейной формы;
- равные линейные формы, нулевая линейная форма;
- сумма линейных форм;
- произведение линейной формы на число;
- сопряженное пространство;
- сопряженный (двойственный, взаимный) базис;
- теорема о преобразовании сопряженного базиса;
- преобразование координат линейной формы при преобразовании базиса;
- изоморфизм пространств V и $V^{\,*}$;
- второе сопряженное пространство, изоморфизм пространств V и $V^{\,**}.$

Задание 1: линейные формы в арифметическом пространстве

Являются ли следующие отображения $\phi_i:\mathbb{R}^3 o \mathbb{R}$ линейными формами:

- $\varphi_1:(x^1,x^2,x^3)^T\mapsto x^2$;
- $\varphi_2:(x^1,x^2,x^3)^T\mapsto |x^1-x^2|;$
- $\varphi_3: (x^1, x^2, x^3)^T \mapsto \max\{x^i\};$
- $\varphi_4:(x^1,x^2,x^3)^T\mapsto x^1x^2+x^3;$
- $\varphi_5:(x^1,x^2,x^3)^T\mapsto 2x^3-x^1;$
- $\varphi_6: (x^1, x^2, x^3)^T \mapsto \sum_{i=1}^3 x^i$;

В случае, если данные отображения являются линейными формами, найдите их коэффициенты в стандартном базисе \mathbb{R}^3 .

P.S. Во всех случаях верхние индексы означают именно индексацию компонент вектора, а не степени.

Задание 2: линейные формы в матрицах

В пространстве $M_n(\mathbb{R})$ рассмотрите функции следа и определителя. Являются ли они линейными? Если отображения являются линейными, постройте ее координатную

строку (набор коэффициентов) в базисе из матричных единиц.

Для примера можно рассмотреть пространство $M_2(\mathbb{R})$.

Какими способами можно задать линейную форму в пространстве прямоугольных матриц, например, $M_{2\times 3}(\mathbb{R})$? Приведите хотя бы два примера.

Задание 3: базис сопряженного пространства

Докажите, что линейные формы

$$f^1(x)=4x^1+2x^2-x^3, f^2(x)=5x^1+3x^2-2x^3, f^3(x)=3x^1+2x^2-x^3$$
, образуют базис пространства $(\mathbb{R}^3)^*$.

Найдите коэффициенты линейной формы $\phi(x) = 5x^1 - 4x^2 + 2x^3$ относительно этого базиса.

Задание 4: поиск сопряженного базиса

Допустим в пространстве $V=\mathbb{R}^{\,3}$ определен базис

$$v_1 = (1, 1, 1)^T$$

 $v_2 = (1, 2, 4)^T$
 $v_3 = (1, 3, 5)^T$

Найдите сопряженный к нему базис в V^* . Затем найдите базис второго сопряженного пространства V^{**} .

Проверьте утверждение, что для любой линейной формы $f \in V^*$ выполняется соотношение

$$v(f) = f(v),$$

где $v \in V^*$ и $v \in V$, но имеют одинаковые координатные представления в рассмотренных базисах своих пространств. Можно взять линейную форму $F \in V^*$ с произвольными коэффициентами.

Задание 5: ядро линейной формы

Рассмотрите линейную форму

$$V = \mathbb{R}^4$$
, $f \in V^*$, $f(x) = 2x^1 - 3x^2 - x^3 + x^4$

Найдите ядро этой линейной формы и покажите, что оно образует линейное подпространство $\ker f \leqslant V$.

Найдите векторы, которые лежат в пересечении ядер этой линейной формы и линейной формы $\phi(x) = x^1 - 2x^2 + 2x^3 + 3x^4$.