Операторы в евклидовых пространствах

Содержание

§1	Эрмитово сопряженный оператор	1
§2	Самосопряженный и эрмитов операторы	2
§3	Спектральные свойства эрмитова оператора	2
§4	Унитарный оператор	3
§5	Матрица унитарного оператора	4
§6	Спектральные свойства унитарного оператора	5

§1. Эрмитово сопряженный оператор

Пусть дано евклидово пространство $X_E(\mathbb{K})$ со скалярным произведением $\langle \cdot, \cdot \rangle$.

Определение 1.1. Оператор φ^{\dagger} называется эрмитово сопряженным к оператору φ , если он обладает следующим свойством:

$$\langle x, \varphi y \rangle = \langle \varphi^{\dagger} x, y \rangle.$$

Замечание 1.1. Операция эрмитового сопряжения обладает следующими свойствами:

- аддитивность: $(\varphi + \psi)^{\dagger} = \varphi^{\dagger} + \psi^{\dagger};$
- сопряженная однородность: $(\lambda \varphi)^{\dagger} = \overline{\lambda} \varphi^{\dagger};$
- контравариантность: $(\psi \circ \varphi)^{\dagger} = \varphi^{\dagger} \circ \psi^{\dagger};$
- инволютивность: $(\varphi^{\dagger})^{\dagger} = \varphi$.

Лемма 1.1. Пусть $\{e_j\}_{j=1}^n$ — базис евклидова пространства $X_E(\mathbb{K})$ и G - его матрица Грама. Тогда если A_{φ} — матрица оператора φ в этом базисе, то матрица φ^{\dagger} будет имеет вид

$$A_{\omega^{\dagger}} = G^{-1}A^{\dagger}G, \quad A^{\dagger} = \overline{A}^{T}.$$

Доказательство. По определению скалярного произведения:

$$\langle x, \varphi y \rangle = \xi^{\dagger} G(A_{\varphi} \eta) = (\xi^{\dagger} G A_{\varphi} G^{-1}) G \eta = (G^{-1} A_{\varphi}^{\dagger} G \xi)^{\dagger} G \eta = \langle \varphi^{\dagger} x, y \rangle.$$

§2. Самосопряженный и эрмитов операторы

Определение 2.1. Оператор, обладающий свойством $\varphi^{\dagger} = \varphi$ называется самосопряженным, если $\mathbb{K} = \mathbb{R}$ и эрмитовским, если $\mathbb{K} = \mathbb{C}$.

Замечание 2.1. Матрицы самосопряженного φ и эрмитовского ψ операторов обладают соответственно свойствами:

$$A_{\varphi}^T = A_{\varphi}, \quad B_{\psi}^{\dagger} = B_{\psi}.$$

Пример 2.1. Примеры матрицы A самосопряженного оператора и матрицы B эрмитовского оператора:

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 2i \\ -2i & 5 \end{pmatrix}.$$

Замечание 2.2. В случае вещественного поля \mathbb{R} операции \dagger и T совпадают.

§3. Спектральные свойства эрмитова оператора

Лемма 3.1. Все собственные значения эрмитова оператора φ вещественны.

Доказательство. Пусть λ — собственное значение φ и x — соответствующий собственный вектор. Тогда

$$\langle \varphi x, x \rangle = \overline{\lambda} \langle x, x \rangle, \quad \langle x, \varphi x \rangle = \lambda \langle x, x \rangle \quad \Rightarrow \quad \overline{\lambda} = \lambda$$

Пемма 3.2. Собственные векторы эрмитова оператора, отвечающие различным собственным значениям, ортогональны:

$$\varphi x_1 = \lambda_1 x_1, \quad \varphi x_2 = \lambda_2 x_2, \quad \lambda_1 \neq \lambda_2 \quad \Rightarrow \quad x_1 \perp x_2.$$

Доказательство. Действительно,

$$\langle \varphi x_1, x_2 \rangle = \langle x_1, \varphi x_2 \rangle \quad \Rightarrow \quad \langle \lambda_1 x_1, x_2 \rangle = \langle x_1, \lambda_2 x_2 \rangle$$
$$\lambda_1 \langle x_1, x_2 \rangle = \lambda_2 \langle x_1, x_2 \rangle, \quad \overline{\lambda}_2 = \lambda_2, \quad \Rightarrow$$
$$(\lambda_1 - \lambda_2) \langle x_1, x_2 \rangle = 0 \quad \Rightarrow \quad \langle x_1, x_2 \rangle = 0.$$

Пемма 3.3. Если $L \leqslant X$ — инвариантное подпространство эрмитова оператора φ , тогда L^{\perp} — также инвариантное подпространство.

Доказательство. Пусть $x \in L$ и $y \in L^{\perp}$, тогда

$$0 = \langle \varphi x, y \rangle = \langle x, \varphi y \rangle = 0 \quad \Rightarrow \quad \varphi y \in L^{\perp}.$$

.

Теорема 3.1. Эрмитов оператор φ явяется оператором скалярного типа.

Доказательство. Покажем, что собсвенные векторы φ образуют базис $X_E(\mathbb{C})$. Проведем доказательство от противного: пусть $\{x_j\}_{j=1}^m$ — максимальный ЛНЗ набор:

$$\varphi x_j = \lambda_j x_j, \quad j = 1 \dots m \quad m < n = \dim_{\mathbb{C}} X_E.$$

Пусть далее подпространство L образовано как линейная оболочка над этими векторами:

$$L = \langle x_1, x_2, \dots, x_m \rangle_{\mathbb{C}}, \quad M = L^{\perp}, \quad \varphi_M : M \to M$$

Так как M — инвариантное подпространство φ , существует по крайней мере один вектор $\widetilde{x} \in M$, такой что

$$\varphi_M \widetilde{x} = \widetilde{\lambda} \widetilde{x}.$$

Но $\widetilde{x}\perp L$ и значит $\{x_1,x_2,\ldots,x_m,\widetilde{x}\}$ — ЛНЗ. Противоречие.

Теорема 3.2. (Спектральная теорема для эрмитова оператора) Пусть $\varphi: X_E \to X_E$ — эрмитов оператор $u \{e_j\}_{j=1}^n$ — ортонормированный базис X_E , состоящий из собственных векторов φ , тогда:

$$\varphi(*) = \sum_{i=1}^{n} \lambda_i \langle *, e_i \rangle e_i, \quad \lambda_i \in \mathbb{R}.$$

Доказательство. Теорему доказывает два обсуждаемых ранее факта:

- Эрмитов оператор диагонализуем.
- Проектор на любое подпространство имеет вид

$$\mathcal{P}_L(x) = \sum_{i=1}^k \langle x, e_i \rangle e_i,$$

где e_i — ортонормированный базис подпространства L.

§4. Унитарный оператор

Лемма 4.1. Пусть ψ — опертор в евклидовом пространстве $X_E(\mathbb{K})$, тогда следующие свойства эквиваентны:

- (a) изометрия: $\langle \psi x, \psi y \rangle = \langle x, y \rangle$;
- (б) сохранение нормы: $\|\psi x\| = \|x\|$;
- (в) свойство сопряженного: $\psi^{\dagger} = \psi^{-1}$

Доказательство. Проверим следующие импликации:

• Onp.(1) \Rightarrow Onp.(2):

$$\|\psi x\|^2 = \langle \psi x, \psi x \rangle = \langle x, x \rangle = \|x\|^2;$$

• Onp.(2) \Rightarrow Onp.(1):

$$\|\psi(x+y)\|^2 = \|\psi x\|^2 + \|\psi y\|^2 + 2\operatorname{Re}\langle\psi x, \psi y\rangle,$$
$$\|x+y\|^2 = \|x\|^2 + \|y^2\| + 2\operatorname{Re}\langle x, y\rangle \implies \operatorname{Re}\langle x, y\rangle = \operatorname{Re}\langle\psi x, \psi y\rangle$$

Для Іт аналогично рассматриваем $\|\psi(x+i\cdot y)\|^2$

• Onp.(1) \Rightarrow Onp.(3):

$$\langle \psi x, \psi y \rangle = \langle x, \psi^{\dagger} \psi y \rangle = \langle x, y \rangle$$
 Rightarrow $\psi^{\dagger} \psi = \mathcal{I}$.

• Onp.(3) \Rightarrow Onp.(1):

$$\langle x, y \rangle = \langle x, \mathcal{I}y \rangle = \langle x, \psi^{\dagger} \psi y \rangle = \langle \psi x, \psi y \rangle.$$

Определение 4.1. Унитарным называется оператор ψ , обладающий одним из перечисленных выше свойств (и, как следствие, всем остальными).

Лемма 4.2. Определитель оператора ψ имеет следующее свойство:

$$|\det \psi| = 1.$$

Доказательство. Прямой проверкой можно убедиться, что

$$\det \mathcal{I} = \det (\psi^{\dagger} \psi) = \det \psi^{\dagger} \det \psi = \overline{\det \psi} \cdot \det \psi = |\det \psi|^2 = 1.$$

Замечание 4.1. Унитарный оператор в *вещественном* евклидовом пространстве X_E называется **ортогональным** оператором.

§5. Матрица унитарного оператора

Замечание 5.1. Матрицы унитарного и ортогонального операторов имеют свойсва:

$$\mathbb{C}: \quad \psi \leftrightarrow U_{\psi}, \quad \overline{U^T} = U^{-1};$$

$$\mathbb{R}: \quad \psi \leftrightarrow U_{\psi}, \quad U^T = U^{-1}.$$

Замечание 5.2. В вещественном случае

$$\det \psi = \det U_{\psi} = \pm 1$$

Лемма 5.1. Пусть $U_{\psi} = \|u_{ik}\| -$ матрица унитарного оператора, тогда:

$$\sum_{j=1}^{n} \overline{u}_{ij} u_{kj} = \delta_{ik}.$$

Замечание 5.3. Столбцы матрицы унитарного оператора ортогональны.

Пример 5.1. Матрица Эйлера — пример ортогональной матрицы:

$$U = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}.$$

§6. Спектральные свойства унитарного оператора

Лемма 6.1. Все собственные значения оператора ψ по модулю равны единице:

$$|\lambda| = 1 \quad \Leftrightarrow \quad \lambda = e^{i\chi}.$$

Доказательство. Пусть $\psi x = \lambda x$, тогда

$$\langle \psi x, \psi x \rangle = \langle \lambda x, \lambda x \rangle = |\lambda|^2 \langle x, x \rangle. \quad \Rightarrow \quad |\lambda| = 1.$$

Пемма 6.2. Собственные векторы унитарного оператора, отвечающие различным собственным значениям ортогональны:

$$\psi x_1 = \lambda_1 x_1, \quad \psi x_2 = \lambda_2 x_2, \quad \lambda_1 \neq \lambda_2 \quad \Rightarrow \quad \langle x_1, x_2 \rangle = 0.$$

Доказательство. Убедимся прямой проверкой:

$$\langle x_1, x_2 \rangle = \langle \psi x_1, \psi x_2 \rangle = \overline{\lambda}_1 \lambda_2 \langle x_1, x_2 \rangle = e^{-i\chi_1} e^{i\chi_2} \langle x_1, x_2 \rangle = e^{i(\chi_2 - \chi_1)} \langle x_1, x_2 \rangle.$$

Откуда сразу следует:

$$\left(e^{i(\chi_1-\chi_2)}-1\right)\langle x_1,x_2\rangle=0\quad\Rightarrow\quad\langle x_1,x_2\rangle=0.$$

Лемма 6.3. Ортогональное дополнение L^{\perp} инвариантного относительно унитарного оператора ψ подпространства L также является инвариантным.

Доказательство. Для любых $x \in L$ и $y \in L^{\perp}$ имеем:

$$0 = \langle x, y \rangle = \langle \psi x, \psi y \rangle \quad \Rightarrow \quad \psi x \perp \psi y \quad \Rightarrow \quad \psi y \in M.$$

Теорема 6.1. Унитарный оператор является опертором скалярного типа.

Доказательство. Доказательство как для случая эрмитова оператора.

Пример 6.1. Ортогональный оператор, вообще говоря, не явяется скалярным.

Теорема 6.2. (Спектральная теорема для унитарного оператора) Пусть $\psi: X_E \to X_E$ — унитарный оператор $u \{e_j\}_{j=1}^n$ — ортонормированный базис X_E , состоящий из собственных векторов ψ , тогда:

$$\psi(*) = \sum_{j=1}^{n} e^{i\chi_j} \langle e_j, * \rangle e_j.$$