Отображения в линейных пространствах

§1. Введение

Пусть V – линейное пространство над полем \mathbb{K} .

Определение 1.1. Билинейной формой на линейном пространстве $V(\mathbb{K})$ называется такая функция $b: V \times V \to \mathbb{K}$, что $\forall x, x_1, x_2, y, y_1, y_2 \in V, \forall \lambda_1, \lambda_2 \in \mathbb{K}$ выполняется:

(а) Линейность по первому аргументу:

$$b(\lambda_1 x_1 + \lambda_2 x_2, y) = \lambda_1 b(x_1, y) + \lambda_2 b(x_2, y)$$

(б) Линейность по второму аргументу:

$$b(x, \lambda_1 y_1 + \lambda_2 y_2) = \lambda_1 b(x, y_1) + \lambda_2 b(x, y_2)$$

Замечание 1.1. Билинейная форма при фиксировании одного из аргументов есть ничто иное как линейная форма согласно определению, которое было введено ранее. Отсюда сразу следует первый пример.

Пример 1.1. Пусть $f,g\in V^*$ — линейные формы в пространстве $V(\mathbb{K})$. Билинейная форма может быть задана как

$$b: V \times V \to \mathbb{K}, \qquad b(x,y) = f(x) \cdot g(y)$$

Пример 1.2. Скалярное произведение геометрических векторов на плоскости (в пространстве) линейно по каждому из аргументов, а следовательно является билинейной формой.

Пример 1.3. Пусть $V = \mathbb{K}^n$ – арифметическое пространство. Билинейную форму можно задать как

$$b(x,y) = \sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{ij} \xi^{i} \eta^{j},$$

где
$$x = (\xi^1, \xi^2, \dots, \xi^n)^T \in V$$
 и $y = (\eta^1, \eta^2, \dots, \eta^n)^T \in V$.

Замечание 1.2. Последний пример примечателен тем, что любую билинейную форму можно представить в таком виде.

Рассмотрим ${\rm Bil}_{\mathbb K}(V)$ – множество всех билинейных форм с аргументами из V. Для этого множества справедливо следующее.

(a) Билинейные формы $b, b' \in \mathrm{Bil}_{\mathbb{K}}(V)$ равны тогда и только тогда, когда принимают равные значения на одинаковых парах аргументов:

$$b = b'$$
 \Leftrightarrow $b(x,y) = b'(x,y) \quad \forall x, y \in V$

(б) Существует нулевая билинейная форма $\theta \in \mathrm{Bil}_{\mathbb{K}}(V)$, принимающая $0 \in \mathbb{K}$ на любой паре аргументов.

$$\theta \in \operatorname{Bil}_{\mathbb{K}}(V): \qquad \theta(x,y) = 0, \quad \forall x, y \in V$$

(в) Может быть определена сумма билинейных форм $b,b'\in {\rm Bil}_{\mathbb K}(V)$ как отображение вида

$$c = b + b'$$
 \Leftrightarrow $c(x,y) = b(x,y) + b'(x,y), \quad \forall x, y \in V$

(г) Может быть определено умножение билинейной формы $b\in {\rm Bil}_{\mathbb K}(V)$ на скаляр $\lambda\in\mathbb K$ как отображение вида

$$d = \lambda b \qquad \Leftrightarrow \qquad d(x,y) = \lambda b(x,y), \quad \forall x,y \in V$$

Лемма 1.1. Отображения с и d являются билинейными формами.

Доказательство. Аналогично соответствующим утверждениям для линейных форм.

Пемма 1.2. Множество $\mathrm{Bil}_{\mathbb{K}}(V)$ наделено структурой линейного пространства.

Доказательство. Можно убедиться путем прямой проверки аксиом линейного пространства.

Определение 1.2. Билинейная форма $b \in \mathrm{Bil}_{\mathbb{K}}(V)$ называется симметричной, если выполняется b(x,y) = b(y,x).

Определение 1.3. Билинейная форма $b \in \mathrm{Bil}_{\mathbb{K}}(V)$ называется антисимметричной, если выполняется b(x,y) = -b(y,x).

Замечание 1.3. Множество симметричных (антисимметричных) билинейных форм образует линейное подпространство $\mathrm{Bil}_{\mathbb{K}}^{S}(V)$ ($\mathrm{Bil}_{\mathbb{K}}^{AS}(V)$) в $\mathrm{Bil}_{\mathbb{K}}(V)$.

Из каждой билинейной формы может быть изготовлена симметричная форма:

$$b^{S}(x,y) = \frac{1}{2}(b(x,y) + b(y,x)), \qquad b^{S} \in \text{Bil}_{\mathbb{K}}^{S}(V)$$

Аналогично может быть изготовлена антисимметричная форма:

$$b^{AS}(x,y) = \frac{1}{2}(b(x,y) - b(y,x)), \qquad b^{AS} \in \operatorname{Bil}_{\mathbb{K}}^{AS}(V)$$

Пемма 1.3. Сумма симметричной и антисимметричной формы, построенных согласно процедуре выше, дает исходную билинейную форму.

Доказательство. Убеждаемся непосредственной проверкой:

$$b^S(x,y) + b^{AS}(x,y) = \frac{1}{2}(b(x,y) + b(y,x)) + \frac{1}{2}(b(x,y) - b(y,x)) = b(x,y)$$

Пемма 1.4. Пространство билинейных форм представляется в виде прямой суммы подпространств симметричных и антисимметричных билинейных форм.

 $\operatorname{Bil}_{\mathbb{K}}(V) = \operatorname{Bil}_{\mathbb{K}}^{S}(V) \oplus \operatorname{Bil}_{\mathbb{K}}^{AS}(V)$

Доказательство. Процедура изготовления симметричных (антисимметричных) форм, описанная выше, позволяет заключить, что

$$\operatorname{Bil}_{\mathbb{K}}(V) = \operatorname{Bil}_{\mathbb{K}}^{S}(V) + \operatorname{Bil}_{\mathbb{K}}^{AS}(V)$$

Покажем, что сумма будет прямой. Пусть билинейная форма h(x,y) такова, что $h\in \mathrm{Bil}_{\mathbb{K}}^S(V)\cap \mathrm{Bil}_{\mathbb{K}}^{AS}(V)$. Тогда имеем

$$\begin{cases} h(x,y) = h(y,x) \\ h(x,y) = -h(y,x) \end{cases} \Rightarrow h(y,x) = -h(y,x) \Rightarrow h(x,y) = 0 \quad \forall x,y \in V$$

В пересечении подпространств лежит только нулевая билинейная форма. Следовательно сумма является прямой.

§2. Матрица билинейной формы

Предположим, что V – конечномерное линейное пространство. Зафиксируем в V базис $\{e_i\}_{i=1}^n$, где $n=\dim V$.

Определение 2.1. Коэффициентами β_{ij} билинейной формы b(x,y) называются значения этой линейной формы на базисных векторах пространства.

$$b(e_i, e_j) = \beta_{ij}$$

Теорема 2.1. Задание билинейной формы эквивалентно заданию ее значений на базисных векторах, т.е. заданию ее коэффициентов.

Доказательство. Пусть в выбранном базисе $\{e_i\}_{i=1}^n$ линейного пространства V билинейная форма b(x,y) задана набором коэффициентов $\{\beta_{ij}\}_{i,j=1}^n$. Тогда $\forall x = \sum_{i=1}^n \xi^i e_i, y = \sum_{j=1}^n \eta^j e_j$:

$$b(x,y) = b\left(\sum_{i=1}^{n} \xi^{i} e_{i}, \sum_{j=1}^{n} \eta^{j} e_{j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{n} \xi^{i} \eta^{j} b(e_{i}, e_{j}) = \sum_{i=1}^{n} \sum_{j=1}^{n} \xi^{i} \eta^{j} \beta_{ij}$$

По аналогии с линейными формами, коэффициенты которых можно представить в виде вектора-строки, существует аналогичное представление для билинейной формы.

Определение 2.2. Матрицей билинейной формы b(x,y) называется матрица B, составленная из ее коэффициентов.

Лемма 2.1. Пространство билинейных форм $\mathrm{Bil}_{\mathbb{K}}(V)$ изоморфно пространству квадратных матриц $M_n(\mathbb{K})$.

Доказательство. Изоморфизм устанавливается следующим образом:

$$b \leftrightarrow B \qquad b' \leftrightarrow B'$$
$$b + b' \leftrightarrow B + B'$$
$$\lambda b \leftrightarrow \lambda B$$

Соответствие между линейными операциями с билинейными формами и матрицами проверяется непосредственной проверкой определений.

Замечание 2.1. По этой же самой аналогии мы устанавливали изоморфизм между $V^* \simeq \mathbb{K}^n$, если $\dim V = n$. Мы снова наблюдаем идею "координатизации"пространства. В данном случае "координатами"билинейной формы служат коэффициенты ее матрицы.

Замечание 2.2. Матрица симметричной (антисимметричной) билинейной формы является симметричной (антисимметричной).

$$b^S \leftrightarrow B_S$$
 $B_S = B_S^T$
 $b^{AS} \leftrightarrow B_{AS}$ $B_{AS} = -B_{AS}^T$

В силу того, что матрица билинейной формы определяется как объект, зависящий от выбора базиса, то и смена базиса должна приводить к изменению матрицы билинейной формы. Действительно аналогичную ситуацию мы опять же уже встречали на примере строки коэффициентов линейной формы.

Теорема 2.2. Матрицы B и B' билинейной формы b(x,y), заданные в базисах $\{e_i\}_{i=1}^n$ и $\{e_j'\}_{j=1}^n$ связаны соотношением

$$B' = C^T B C$$
.

где $C=(c_j^i)$ - матрица перехода от базиса $\{e_i\}_{i=1}^n$ к базису $\{e_j'\}_{j=1}^n$.

Доказательство. Полагая, что известна матрица перехода $C=(c_j^i)$, компоненты нового базиса можно выразить через векторы старого базиса как

$$e_j' = \sum_{i=1}^n c_j^i e_i$$

Воспользуемся этим, чтобы получить компоненты матрицы билинейной формы в новом базисе

$$\beta'_{ij} = b(e'_i, e'_j) = b\left(\sum_{k=1}^n c_i^k e_k, \sum_{l=1}^n c_j^l e_l\right) = \sum_{k=1}^n \sum_{l=1}^n c_i^k c_j^l \, b(e_k, e_l) = \sum_{k=1}^n \sum_{l=1}^n c_i^k c_j^l \beta_{kl},$$

где $\beta_{kl} = b(e_k, e_l)$ для всех k, l = 1, ...n - коэффициенты матрицы билинейной формы в старом базисе. Данное двойное суммирование означает ничто иное как матричное умножение, которое можно записать в виде

$$B' = C^T B C$$

Данное утверждение легко проверяется прямым раскрытием матричного умножения в индексном виде.

§3. Квадратичная форма

Пусть $V(\mathbb{K})$ — линейное пространство над полем \mathbb{K} . Предположим также, что в этом линейном пространстве определена билинейная форма $b: V \times V \to \mathbb{K}$.

Определение 3.1. Квадратичной формой на линейном пространстве V называется отображение q(v), построенное из билинейной формы b(x,y) следующим образом:

$$q: V \to \mathbb{K}, \qquad q(v) = b(v, v), \qquad \forall x \in V$$

Замечание 3.1. Любая билинейная форма b(x,y) задает квадратичную функцию q(v), которая получается из нее ограничением области определения с $V \times V$ на диагональ $\{(v,v): v \in V\} \subset V \times V$.

Пемма 3.1. Квадратичная форма является однородным полиномом степени 2 от координат вектора.

Доказательство. Справедливы следующие рассуждения:

$$q(\lambda v) = b(\lambda v, \lambda v) = \lambda^2 b(v, v) = \lambda^2 q(v)$$

Тем самым мы показали, что квадратичная форма является однородной функцией 2-го порядка. Зафиксируем теперь базис $\{e_i\}_{i=1}^n$ в пространстве V. Произвольный вектор можем разложить по этому базису единственным образом $v=\sum_{i=1}^n v^i e_i$. Тогда квадратичная функция в координатном представлении имеет вид

$$q(v) = q\left(\sum_{i=1}^{n} v^{i} e_{i}\right) = b\left(\sum_{i=1}^{n} v^{i} e_{i}, \sum_{j=1}^{n} v^{j} e_{j}\right) =$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} v^{i} v^{j} b(e_{i}, e_{j}) = \sum_{i=1}^{n} \sum_{j=1}^{n} v^{i} v^{j} \beta_{ij},$$

где β_{ij} – коэффициенты билинейной формы, по которой построена квадратичная форма q(v).

Лемма 3.2. По квадратичной форме q(v) однозначно восстанавливается симметричная компонента билинейной формы b(x,y).

Доказательство. Рассмотрим квадратичную форму от суммы векторов $x,y\in V$:

$$q(x+y) = b(x+y, x+y) = b(x, x) + b(x, y) + b(y, x) + b(y, y) = q(x) + b(x, y) + b(y, x) + q(y)$$

Откуда

$$b(x, y) + b(y, x) = q(x + y) - q(x) - q(y)$$

Если билинейную форму полагать симметричной, т.е. $b \in \operatorname{Bil}^S(V)$, то имеем

$$b(x,y) = \frac{1}{2} (q(x+y) - q(x) - q(y))$$

Замечание 3.2. Предыдущей леммой определяется взаимно однозначное соответствие между множеством квадратичных форм и множеством симметричных билинейных форм.

Замечание 3.3. Любой антисимметричной билинейной форме соответствует нулевая квадратичная форма.

Замечание 3.4. Полагая, что билинейная форма описывается матрицей с коэффициентами β_{ij} , квадратичную форму можно также представить в виде:

$$q(v) = \sum_{i=1}^{n} \sum_{j=1}^{n} \beta_{ij} v^{i} v^{j} = \sum_{i=1}^{n} \beta_{ii} (v^{i})^{2} + 2 \sum_{i < j} \beta_{ij} v^{i} v^{j},$$

где $v^i - i$ -я координата вектора v в выбранном базисе.