Математический анализ. Практика.

КР 1. Вариант 2.

1. Вычислить неопределенный интеграл:

$$\int \frac{\ln x}{\sqrt{x}} \ dx$$

Решение:

Используем метод интегрирования по частям: $\int u \ dv = uv - \int v \ du$

Пусть $u = \ln x$, $dv = x^{-\frac{1}{2}}dx$

Тогда $du = \frac{1}{x} dx$, $v = \int x^{-\frac{1}{2}} dx = 2\sqrt{x}$

$$\int \frac{\ln x}{\sqrt{x}} dx = \ln x \cdot 2\sqrt{x} - \int 2\sqrt{x} \cdot \frac{1}{x} dx$$

$$= 2\sqrt{x} \ln x - 2 \int \frac{\sqrt{x}}{x} dx$$

$$= 2\sqrt{x} \ln x - 2 \int x^{-\frac{1}{2}} dx$$

$$= 2\sqrt{x} \ln x - 2 \cdot 2\sqrt{x} + C$$

$$= 2\sqrt{x} \ln x - 4\sqrt{x} + C$$

$$= 2\sqrt{x} (\ln x - 2) + C$$

Ответ: $2\sqrt{x}(\ln x - 2) + C$

2. Вычислить неопределенный интеграл:

$$\int \frac{x^2 - 6x + 8}{x^3 + 8} \ dx$$

Решение:

Разложим знаменатель на множители: $x^3 + 8 = x^3 + 2^3 = (x+2)(x^2 - 2x + 4)$

Разложим дробь на простейшие:

$$\frac{x^2 - 6x + 8}{(x+2)(x^2 - 2x + 4)} = \frac{A}{x+2} + \frac{Bx + C}{x^2 - 2x + 4}$$

$$x^2 - 6x + 8 = A(x^2 - 2x + 4) + (Bx + C)(x + 2)$$

При
$$x=-2$$
: $4+12+8=24=A(4+4+4)=12A$, откуда $A=2$

Приравнивая коэффициенты при x^2 : 1 = A + B = 2 + B, откуда B = -1

Приравнивая коэффициенты при x^0 : 8 = 4A + 2C = 8 + 2C, откуда C = 0

$$\int \frac{x^2 - 6x + 8}{x^3 + 8} dx = \int \frac{2}{x + 2} dx + \int \frac{-x}{x^2 - 2x + 4} dx$$
$$= 2\ln|x + 2| - \int \frac{x}{x^2 - 2x + 4} dx$$

Для второго интеграла используем замену $u = x^2 - 2x + 4$, du = (2x - 2)dx:

$$\int \frac{x}{x^2 - 2x + 4} dx = \frac{1}{2} \int \frac{2x - 2 + 2}{x^2 - 2x + 4} dx$$

$$= \frac{1}{2} \int \frac{2x - 2}{x^2 - 2x + 4} dx + \int \frac{1}{x^2 - 2x + 4} dx$$

$$= \frac{1}{2} \ln|x^2 - 2x + 4| + \int \frac{1}{(x - 1)^2 + 3} dx$$

$$= \frac{1}{2} \ln|x^2 - 2x + 4| + \frac{1}{\sqrt{3}} \arctan \frac{x - 1}{\sqrt{3}} + C_1$$

Ответ: $2\ln|x+2| - \frac{1}{2}\ln|x^2 - 2x + 4| - \frac{1}{\sqrt{3}}\arctan\frac{x-1}{\sqrt{3}} + C$

3. Вычислить определенный интеграл:

$$\int_{1}^{6} \frac{dx}{2 + \sqrt{x+3}}$$

Решение:

Используем замену $t = \sqrt{x+3}$, тогда $t^2 = x+3$, $x = t^2-3$, dx = 2tdt

При
$$x=1$$
: $t=\sqrt{4}=2$ При $x=6$: $t=\sqrt{9}=3$

$$\begin{split} \int_{1}^{6} \frac{dx}{2 + \sqrt{x + 3}} &= \int_{2}^{3} \frac{2tdt}{2 + t} \\ &= 2 \int_{2}^{3} \frac{t}{2 + t} dt \\ &= 2 \int_{2}^{3} \frac{t + 2 - 2}{2 + t} dt \\ &= 2 \int_{2}^{3} \left(1 - \frac{2}{2 + t}\right) dt \\ &= 2[t - 2\ln|2 + t]_{2}^{3} \\ &= 2[(3 - 2\ln 5) - (2 - 2\ln 4)] \\ &= 2[1 - 2\ln 5 + 2\ln 4] \\ &= 2\left[1 - 2\ln \frac{5}{4}\right] \\ &= 2 - 4\ln \frac{5}{4} \end{split}$$

Ответ: $2 - 4 \ln \frac{5}{4}$

4. Вычислить несобственный интеграл (или установить его расходимость):

$$\int_{\frac{1}{2}}^{1} \frac{\ln(3x-1)}{3x-1} \ dx$$

Решение:

Это несобственный интеграл первого рода. Особая точка $x=\frac{1}{3}$, где знаменатель обращается в ноль.

Используем замену u=3x-1, тогда $du=3dx,\,dx=\frac{du}{3}$

При $x=\frac{1}{3}$: u=0 При x=1: u=2

$$\begin{split} \int_{\frac{1}{3}}^{1} \frac{\ln(3x-1)}{3x-1} \ dx &= \lim_{\varepsilon \to 0^{+}} \int_{\varepsilon}^{2} \frac{\ln u}{u} \cdot \frac{du}{3} \\ &= \frac{1}{3} \lim_{\varepsilon \to 0^{+}} \int_{\varepsilon}^{2} \frac{\ln u}{u} \ du \end{split}$$

Для вычисления интеграла используем замену $v = \ln u$, $dv = \frac{du}{u}$:

$$\int \frac{\ln u}{u} \ du = \int v \ dv = \frac{v^2}{2} + C = \frac{(\ln u)^2}{2} + C$$

$$\frac{1}{3} \lim_{\varepsilon \to 0^+} \int_{\varepsilon}^2 \frac{\ln u}{u} \ du = \frac{1}{3} \lim_{\varepsilon \to 0^+} \left[\frac{(\ln u)^2}{2} \right]_{\varepsilon}^2$$

$$= \frac{1}{3} \lim_{\varepsilon \to 0^+} \left[\frac{(\ln 2)^2}{2} - \frac{(\ln \varepsilon)^2}{2} \right]$$

$$= \frac{1}{3} \left[\frac{(\ln 2)^2}{2} - \lim_{\varepsilon \to 0^+} \frac{(\ln \varepsilon)^2}{2} \right]$$

Поскольку $\lim_{\varepsilon \to 0^+} (\ln \varepsilon)^2 = +\infty$, интеграл расходится.

Ответ: Интеграл расходится

5. Вычислить длину кривой от $t_1 = 0$ до $t_2 = \sqrt{3}$:

$$\begin{cases} x = t^2 \\ y = t - \frac{t^3}{3} \end{cases}$$

Решение:

Длина параметрически заданной кривой вычисляется по формуле:

$$L = \int_{t_1}^{t_2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \ dt$$

Найдем производные:

$$\frac{dx}{dt} = 2t$$

$$\frac{dy}{dt} = 1 - t^2$$

$$L = \int_0^{\sqrt{3}} \sqrt{(2t)^2 + (1 - t^2)^2} dt$$

$$= \int_0^{\sqrt{3}} \sqrt{4t^2 + 1 - 2t^2 + t^4} dt$$

$$= \int_0^{\sqrt{3}} \sqrt{t^4 + 2t^2 + 1} dt$$

$$= \int_0^{\sqrt{3}} \sqrt{(t^2 + 1)^2} dt$$

$$= \int_0^{\sqrt{3}} |t^2 + 1| dt$$

$$= \int_0^{\sqrt{3}} (t^2 + 1) dt$$

$$= \left[\frac{t^3}{3} + t \right]_0^{\sqrt{3}}$$

$$= \frac{(\sqrt{3})^3}{3} + \sqrt{3} - 0$$

$$= \frac{3\sqrt{3}}{3} + \sqrt{3}$$

$$= \sqrt{3} + \sqrt{3}$$

$$= 2\sqrt{3}$$

Ответ: $L=2\sqrt{3}$

КР 1. Вариант 3.

1. Вычислить площадь фигуры, ограниченной данными кривыми

$$y = xe^{-3x}, \quad y = 0, \quad x = 1$$

Решение:

Площадь фигуры равна определенному интегралу:

$$S = \int_0^1 x e^{-3x} \ dx$$

Используем интегрирование по частям: u = x, $dv = e^{-3x}dx$

Тогда $du=dx,v=-rac{1}{3}e^{-3x}$

$$\int xe^{-3x} dx = x \cdot \left(-\frac{1}{3}e^{-3x}\right) - \int \left(-\frac{1}{3}e^{-3x}\right) dx$$

$$= -\frac{x}{3}e^{-3x} + \frac{1}{3}\int e^{-3x} dx$$

$$= -\frac{x}{3}e^{-3x} + \frac{1}{3} \cdot \left(-\frac{1}{3}e^{-3x}\right) + C$$

$$= -\frac{x}{3}e^{-3x} - \frac{1}{9}e^{-3x} + C$$

$$= -\frac{1}{9}e^{-3x}(3x+1) + C$$

$$S = \int_0^1 xe^{-3x} dx$$

$$= \left[-\frac{1}{9}e^{-3x}(3x+1)\right]_0^1$$

$$= -\frac{1}{9}e^{-3}(3+1) - \left(-\frac{1}{9}e^{0}(0+1)\right)$$

$$= -\frac{4}{9}e^{-3} + \frac{1}{9}$$

Ответ: $S = \frac{1}{9}(1 - 4e^{-3})$

2. Вычислить длину дуги кривой

$$\begin{cases} x = 5 - 6t^3 \\ y = \frac{t^2}{2} \end{cases}, \quad t \in [1, 2]$$

 $=\frac{1}{9}(1-4e^{-3})$

Решение:

Длина параметрически заданной кривой:

$$L = \int_{t_1}^{t_2} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \ dt$$

Найдем производные:

$$\frac{dx}{dt} = -18t^2$$

$$\frac{dy}{dt} = t$$

$$L = \int_1^2 \sqrt{(-18t^2)^2 + t^2} dt$$

$$= \int_1^2 \sqrt{324t^4 + t^2} dt$$

$$= \int_1^2 \sqrt{t^2(324t^2 + 1)} dt$$

$$= \int_1^2 t\sqrt{324t^2 + 1} dt$$

Используем замену $u=324t^2+1$, тогда $du=648t\,\,dt,\,t\,\,dt=rac{du}{648}$

При t=1: u=325 При t=2: $u=324\cdot 4+1=1297$

$$\begin{split} L &= \int_{325}^{1297} \sqrt{u} \cdot \frac{1}{648} \; du \\ &= \frac{1}{648} \int_{325}^{1297} u^{\frac{1}{2}} \; du \\ &= \frac{1}{648} \left[\frac{2}{3} u^{\frac{3}{2}} \right]_{325}^{1297} \\ &= \frac{1}{972} \left[u^{\frac{3}{2}} \right]_{325}^{1297} \\ &= \frac{1}{972} \left(1297^{\frac{3}{2}} - 325^{\frac{3}{2}} \right) \end{split}$$

 $1297^{\frac{3}{2}}=1297\sqrt{1297}=1297\cdot 36.014...pprox 46706\ 325^{\frac{3}{2}}=325\sqrt{325}=325\cdot 18.028...pprox 5859$ Ответ: $L=rac{1}{972}\left(1297^{\frac{3}{2}}-325^{\frac{3}{2}}
ight)$

3. Вычислить несобственный интеграл

$$\int_{1}^{+\infty} \frac{dx}{x \ln^2 x}$$

Решение:

Используем замену $u=\ln x$, тогда $du=\frac{dx}{x}$

При x=1: u=0 При $x\to +\infty$: $u\to +\infty$

$$\begin{split} \int_1^{+\infty} \frac{dx}{x \ln^2 x} &= \int_0^{+\infty} \frac{du}{u^2} \\ &= \lim_{b \to +\infty} \int_0^b u^{-2} \ du \\ &= \lim_{b \to +\infty} \left[-u^{-1} \right]_0^b \\ &= \lim_{b \to +\infty} \left(-\frac{1}{b} - \left(-\frac{1}{0} \right) \right) \end{split}$$

Но интеграл имеет особенность в точке u=0 (т.е. x=1), поэтому:

$$\begin{split} \int_{1}^{+\infty} \frac{dx}{x \ln^{2} x} &= \lim_{\varepsilon \to 0^{+}} \int_{1+\varepsilon}^{+\infty} \frac{dx}{x \ln^{2} x} \\ &= \lim_{\varepsilon \to 0^{+}} \lim_{b \to +\infty} \left[-\frac{1}{\ln x} \right]_{1+\varepsilon}^{b} \\ &= \lim_{\varepsilon \to 0^{+}} \lim_{b \to +\infty} \left(-\frac{1}{\ln b} + \frac{1}{\ln(1+\varepsilon)} \right) \\ &= \lim_{\varepsilon \to 0^{+}} \frac{1}{\ln(1+\varepsilon)} \end{split}$$

Поскольку $\lim_{\varepsilon \to 0^+} \ln(1+\varepsilon) = 0^+$, то $\lim_{\varepsilon \to 0^+} \frac{1}{\ln(1+\varepsilon)} = +\infty$

Ответ: Интеграл расходится

4. Исследовать на сходимость интеграл

$$\int_{1}^{+\infty} \frac{2 + \cos x}{x^2} \ dx$$

Решение:

Оценим подынтегральную функцию. Поскольку $-1 \le \cos x \le 1$, то: $1 \le 2 + \cos x \le 3$

Следовательно: $\frac{1}{x^2} \le \frac{2 + \cos x}{x^2} \le \frac{3}{x^2}$

Исследуем сходимость мажорирующего интеграла:

$$\int_{1}^{+\infty} \frac{3}{x^2} dx = 3 \int_{1}^{+\infty} x^{-2} dx = 3 \left[-x^{-1} \right]_{1}^{+\infty} = 3(0 - (-1)) = 3$$

Интеграл $\int_1^{+\infty} \frac{3}{x^2} \ dx$ сходится.

По признаку сравнения, поскольку $0<\frac{2+\cos x}{x^2}\leq \frac{3}{x^2}$ и $\int_1^{+\infty}\frac{3}{x^2}\;dx$ сходится, то исходный интеграл также сходится.

Ответ: Интеграл сходится

5. Найти предел

$$\lim_{n\to\infty}\frac{1^4+2^4+\ldots+n^4}{n^5}$$

Решение:

Используем формулу для суммы четвертых степеней:

$$\begin{split} \sum_{k=1}^n k^4 &= \frac{n(n+1)(2n+1)\big(3n^2+3n-1\big)}{30} \\ \lim_{n\to\infty} \frac{\sum_{k=1}^n k^4}{n^5} &= \lim_{n\to\infty} \frac{n(n+1)(2n+1)\big(3n^2+3n-1\big)}{30n^5} \\ &= \frac{1}{30} \lim_{n\to\infty} \frac{n(n+1)(2n+1)\big(3n^2+3n-1\big)}{n^5} \end{split}$$

Раскроем числитель:

$$n(n+1)(2n+1)\big(3n^2+3n-1\big)=n(n+1)(2n+1)\big(3n^2+3n-1\big)$$

$$\approx n\cdot n\cdot 2n\cdot 3n^2=6n^5 \quad \text{при} \ \ n\to\infty$$

Более точно:

$$\begin{split} \frac{n(n+1)(2n+1)\big(3n^2+3n-1\big)}{n^5} &= \frac{(n+1)(2n+1)\big(3n^2+3n-1\big)}{n^4} \\ &= \Big(1+\frac{1}{n}\Big)\Big(2+\frac{1}{n}\Big)\Big(3+\frac{3}{n}-\frac{1}{n^2}\Big) \\ &\to 1\cdot 2\cdot 3 = 6 \quad \text{при} \quad n\to\infty \end{split}$$

$$\lim_{n\to\infty} \frac{1^4+2^4+\ldots+n^4}{n^5} &= \frac{1}{30}\cdot 6 = \frac{1}{5} \end{split}$$

Ответ: $\frac{1}{5}$

6. Запишите номера всех верных формулировок определения интеграла Римана.

Пусть $\sigma_{\tau}(f,\xi)$ - интегральная сумма функции $f:[a,b]\to\mathbb{R}$, отвечающая оснащенному разбиению (τ,ξ) отрезка [a,b]. Тогда интегралом Римана от функции f по отрезку [a,b] называется такое число I, что:

a)
$$\exists \varepsilon > 0: \ \forall \delta > 0 \ \exists (\tau, \xi): \ \lambda(\tau) \to 0 \Rightarrow |I - \sigma_{\tau}(f, \xi)| \geq \varepsilon$$

6)
$$\forall \varepsilon > 0 \; \exists \delta > 0 : \; \forall (\tau, \xi) : \; \lambda(\tau) \to 0 \Rightarrow |I - \sigma_{\tau}(f, \xi)| < \varepsilon$$

$$\mathrm{B}) \ \forall (\tau^n, \xi^n) : \lambda(\tau^n) \overset{n \to \infty}{\to} 0 \Rightarrow \sigma_{\tau^n}(f, \xi^n) \overset{n \to \infty}{\to} I$$

$$\mathrm{r)}\;\forall \varepsilon>0\;\exists (\tau^n,\xi^n):\;\lambda(\tau^n)\stackrel{n\to\infty}{\to}0\;\;\mathrm{ii}\;\;|\sigma_{\tau^n}(f,\xi^n)-I|<\varepsilon$$

д)
$$\forall \varepsilon > 0 \ \exists (\tau^n, \xi^n): \ \lambda(\tau^n) < \varepsilon \Rightarrow \sigma_{\tau^n}(f, \xi^n) \overset{n \to \infty}{\to} I$$

Решение:

Интеграл Римана от функции f по отрезку [a,b] существует и равен I, если:

$$\forall \varepsilon > 0 \; \exists \delta > 0: \; \forall (\tau, \xi) \; \Big(\lambda(\tau) < \delta \Rightarrow |\sigma_{\tau(f, \xi)} - I| < \varepsilon \Big)$$

Проанализируем каждый вариант:

a)
$$\exists \varepsilon > 0$$
: $\forall \delta > 0 \ \exists (\tau, \xi) : \ \lambda(\tau) \to 0 \Rightarrow |I - \sigma_{\tau}(f, \xi)| \ge \varepsilon$

НЕВЕРНО - это отрицание определения сходимости.

6)
$$\forall \varepsilon > 0 \; \exists \delta > 0: \; \forall (\tau, \xi): \; \lambda(\tau) \to 0 \Rightarrow |I - \sigma_{\tau}(f, \xi)| < \varepsilon$$

НЕВЕРНО - запись некорректна ($\lambda(\tau) \to 0$ должно быть условием, а не следствием).

$$\mathbf{B}) \ \forall (\tau^n, \xi^n) : \lambda(\tau^n) \overset{n \to \infty}{\to} 0 \Rightarrow \sigma_{\tau^n}(f, \xi^n) \overset{n \to \infty}{\to} I$$

ВЕРНО - это секвенциальное определение интеграла Римана.

$$\mathrm{r})\;\forall \varepsilon>0\;\exists (\tau^n,\xi^n):\;\lambda(\tau^n)\overset{n\to\infty}{\to}0\;\;\mathrm{id}\;\;|\sigma_{\tau^n}(f,\xi^n)-I|<\varepsilon$$

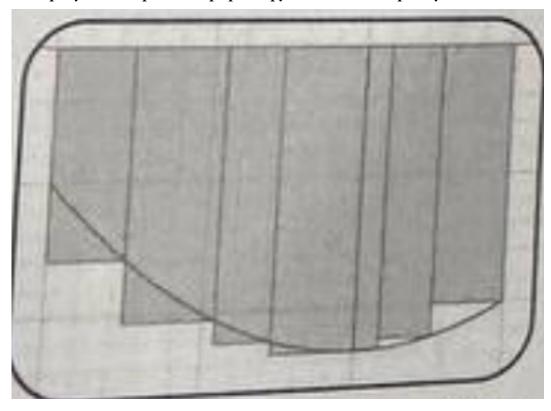
НЕВЕРНО - неполная формулировка.

д)
$$\forall \varepsilon > 0 \ \exists (\tau^n, \xi^n): \ \lambda(\tau^n) < \varepsilon \Rightarrow \sigma_{\tau^n}(f, \xi^n) \overset{n \to \infty}{\to} I$$

НЕВЕРНО - некорректная формулировка.

Ответ: в)

7. На рисунке изображены графики функции и некоторой суммы.



Запишите, какая сумма это может быть? В ответе можно указать несколько вариантов: интегральная сумма, верхняя сумма Дарбу, нижняя сумма Дарбу или никакая из них. Ответ обязательно прокомментируйте.

8. Приведите пример функции f(x), которая определена на отрезке [1,2] и для которой ни одна из интегральных сумм не совпадает с верхней суммой Дарбу при соответствующем разбиении этого отрезка. Обязательно прокомментируйте, почему эта функция удовлетворяет данному условию.

Решение:

Рассмотрим функцию:

$$f(x) = egin{cases} 0, & ext{если} & x & ext{иррационально} \ 1, & ext{если} & x & ext{рациональнo} \end{cases}$$

Комментарий:

Для любого разбиения отрезка [1,2] на отрезки $[x_{i-1},x_i]$:

- 1. **Верхняя сумма Дарбу**: На каждом отрезке $[x_{i-1},x_i]$ есть как рациональные, так и иррациональные точки, поэтому $\sup_{x\in[x_{i-1},x_i]}f(x)=1$. Верхняя сумма Дарбу равна $(2-1)\cdot 1=1$.
- 2. **Интегральная сумма**: Для любого выбора точек $\xi_i \in [x_{i-1}, x_i]$:
 - Если ξ_i рационально, то $f(\xi_i)=1$
 - Если ξ_i иррационально, то $f(\xi_i)=0$

Поскольку в каждом интервале есть как рациональные, так и иррациональные числа, можно выбрать точки ξ_i так, что интегральная сумма будет меньше 1 (например, выбрав все ξ_i иррациональными, получим сумму 0).

Таким образом, интегральная сумма никогда не достигает значения верхней суммы Дарбу.

Ответ:
$$f(x) = \left\{ egin{matrix} 0, & \text{если} & x \text{ иррационально} \\ 1, & \text{если} & x \text{ рационально} \end{matrix} \right.$$

КР 1. Вариант 4.

1. Вычислить площадь фигуры, ограниченной данными кривыми

$$y = (x-1)\ln(x-1), \quad y = 0, \quad x = e+1$$

Решение:

Функция y=(x-1)ln(x-1) определена при x>1. При x=2: $y=1c\cdot ln1=0$ При x=e+1: $y=ec\cdot lne=e>0$

Функция положительна на (2, e+1), поэтому площадь равна:

$$S = \int_{2}^{e+1} (x-1)ln(x-1) \ dx$$

Используем замену u=x-1, тогда x=u+1, dx=du При x=2: u=1 При x=e+1: u=e

$$S = \int_{1}^{e} u lnu \ du$$

Применим интегрирование по частям: $v=u,\,dw=lnu\,\,du$ Тогда $dv=du,\,w=ulnu-u$ (интеграл от lnu)

$$\int u \ln u \ du = u(u \ln u - u) - \int (u \ln u - u) du$$

$$= u^2 \ln u - u^2 - \int u \ln u \ du + \int u \ du$$

$$= u^2 \ln u - u^2 - \int u \ln u \ du + \frac{u^2}{2}$$

Перенесем $\int u \ln u \ du$ влево:

$$\begin{split} 2\int u \ln u \ du &= u^2 \ln u - u^2 + \frac{u^2}{2} = u^2 \ln u - \frac{u^2}{2} \\ \int u \ln u \ du &= \frac{u^2}{2} \ln u - \frac{u^2}{4} + C \\ S &= \left[\frac{u^2}{2} \ln u - \frac{u^2}{4} \right]_1^e \\ &= \left(\frac{e^2}{2} \ln e - \frac{e^2}{4} \right) - \left(\frac{1}{2} \ln 1 - \frac{1}{4} \right) \\ &= \frac{e^2}{2} - \frac{e^2}{4} - 0 + \frac{1}{4} \\ &= \frac{e^2}{4} + \frac{1}{4} = \frac{e^2 + 1}{4} \end{split}$$

Ответ: $S = \frac{e^2 + 1}{4}$

2. Вычислить длину дуги кривой

$$\begin{cases} x = t^2 \cos t \\ y = t^2 \sin t \end{cases}, \quad t \in [0, 1]$$

Решение:

Найдем производные:

$$\frac{dx}{dt} = 2t\cos t - t^2\sin t = t(2\cos t - t\sin t)$$
$$\frac{dy}{dt} = 2t\sin t + t^2\cos t = t(2\sin t + t\cos t)$$

Вычислим $(x')^2 + (y')^2$:

$$\begin{split} (x')^2 + (y')^2 &= t^2 (2\cos t - t\sin t)^2 + t^2 (2\sin t + t\cos t)^2 \\ &= t^2 \big[(2\cos t - t\sin t)^2 + (2\sin t + t\cos t)^2 \big] \\ &= t^2 \big[4\cos^2 t - 4t\cos t\sin t + t^2\sin^2 t + 4\sin^2 t + 4t\sin t\cos t + t^2\cos^2 t \big] \\ &= t^2 \big[4(\cos^2 t + \sin^2 t) + t^2 (\sin^2 t + \cos^2 t) \big] \\ &= t^2 \big[4 + t^2 \big] = t^2 (4 + t^2) \end{split}$$

Длина дуги:

$$L = \int_0^1 \sqrt{t^2(4+t^2)} dt$$
$$= \int_0^1 t\sqrt{4+t^2} dt$$

Используем замену $u=4+t^2$, тогда $du=2t\,\,dt,\,t\,\,dt=\frac{du}{2}$ При t=0: u=4 При t=1: u=5

$$L = \int_{4}^{5} \sqrt{u} \cdot \frac{1}{2} du$$

$$= \frac{1}{2} \int_{4}^{5} u^{\frac{1}{2}} du$$

$$= \frac{1}{2} \left[\frac{2}{3} u^{\frac{3}{2}} \right]_{4}^{5}$$

$$= \frac{1}{3} \left[u^{\frac{3}{2}} \right]_{4}^{5}$$

$$= \frac{1}{3} \left(5\sqrt{5} - 8 \right)$$

Ответ: $L = \frac{1}{3} (5\sqrt{5} - 8)$

3. Вычислить несобственный интеграл

$$\int_{1}^{+\infty} \frac{x^3 dx}{1 + x^8}$$

Решение:

Используем замену $u=x^4$, тогда $du=4x^3dx$, $x^3dx=\frac{du}{4}$ При x=1: u=1 При $x\to +\infty$: $u\to +\infty$

$$\int_{1}^{+\infty} \frac{x^{3} dx}{1+x^{8}} = \int_{1}^{+\infty} \frac{1}{1+(x^{4})^{2}} \cdot x^{3} dx$$

$$= \int_{1}^{+\infty} \frac{1}{1+u^{2}} \cdot \frac{du}{4}$$

$$= \frac{1}{4} \int_{1}^{+\infty} \frac{du}{1+u^{2}}$$

$$= \frac{1}{4} [\arctan u]_{1}^{+\infty}$$

$$= \frac{1}{4} \left(\frac{\pi}{2} - \arctan 1\right)$$

$$= \frac{1}{4} \left(\frac{\pi}{2} - \frac{\pi}{4}\right)$$

$$= \frac{1}{4} \cdot \frac{\pi}{4} = \frac{\pi}{16}$$

Ответ: $\frac{\pi}{16}$

4. Исследовать на сходимость интеграл

$$\int_0^1 \frac{e^{\sqrt[3]{x}} - 1}{\sqrt{x}} dx$$

Решение:

Исследуем поведение подынтегральной функции в окрестности особой точки x=0.

Используем разложение $e^t=1+t+O(t^2)$ при $t\to 0$.

При $x \to 0^+$ имеем $\sqrt[3]{x} \to 0$, поэтому:

$$e^{\sqrt[3]{x}} = 1 + \sqrt[3]{x} + O\left(\left(\sqrt[3]{x}\right)^2\right) = 1 + x^{\frac{1}{3}} + O\left(x^{\frac{2}{3}}\right)$$

Следовательно:

$$e^{\sqrt[3]{x}} - 1 = x^{\frac{1}{3}} + O(x^{\frac{2}{3}})$$

Подынтегральная функция ведет себя как:

$$\frac{e^{\sqrt[3]{x}}-1}{\sqrt{x}}\sim \frac{x^{\frac{1}{3}}}{x^{\frac{1}{2}}}=x^{\frac{1}{3}-\frac{1}{2}}=x^{-\frac{1}{6}}$$

Исследуем сходимость интеграла $\int_0^1 x^{-\frac{1}{6}} dx$:

$$\int_0^1 x^{-\frac{1}{6}} dx = \left[\frac{x^{\frac{5}{6}}}{\frac{5}{6}} \right]_0^1 = \frac{6}{5} \left[x^{\frac{5}{6}} \right]_0^1 = \frac{6}{5} (1 - 0) = \frac{6}{5}$$

Поскольку показатель $-\frac{1}{6} > -1$, интеграл сходится.

Более строго, используем замену $u=\sqrt[3]{x}$, тогда $x=u^3$, $dx=3u^2du$, $\sqrt{x}=u^{\frac{3}{2}}$ При x=0: u=0 При x=1: u=1

$$\begin{split} \int_0^1 \frac{e^{\sqrt[3]{x}} - 1}{\sqrt{x}} dx &= \int_0^1 \frac{e^u - 1}{u^{\frac{3}{2}}} \cdot 3u^2 du \\ &= 3 \int_0^1 \frac{(e^u - 1)u^2}{u^{\frac{3}{2}}} du \\ &= 3 \int_0^1 (e^u - 1)u^{\frac{1}{2}} du \end{split}$$

Поскольку $e^u-1\sim u$ при $u\to 0$ и $u^{\frac{1}{2}}\cdot u=u^{\frac{3}{2}}$, подынтегральная функция ведет себя как $u^{\frac{3}{2}}$ в окрестности нуля, что интегрируемо.

Ответ: Интеграл сходится

5. Найти предел

$$\lim_{n\to\infty} \frac{\pi}{n} \left(\sin\frac{\pi}{n} + \sin\frac{2\pi}{n} + \dots + \sin\frac{n\pi}{n} \right)$$

Решение:

Данная сумма является интегральной суммой Римана для функции $f(x) = \sin(\pi x)$ на отрезке [0,1] с разбиением на n равных частей.

$$\frac{\pi}{n} \sum_{k=1}^{n} \sin \frac{k\pi}{n} = \frac{\pi}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right) = \pi \sum_{k=1}^{n} f\left(\frac{k}{n}\right) \cdot \frac{1}{n}$$

где $\frac{1}{n}=\frac{1-0}{n}$ - длина каждого отрезка разбиения.

По определению интеграла Римана:

$$\lim_{n\to\infty}\sum_{k=1}^n f\bigg(\frac{k}{n}\bigg)\cdot\frac{1}{n}=\int_0^1 f(x)dx=\int_0^1 \sin(\pi x)dx$$

Вычислим интеграл:

$$\begin{split} \int_0^1 \sin(\pi x) dx &= \left[-\frac{1}{\pi} \cos(\pi x) \right]_0^1 \\ &= -\frac{1}{\pi} [\cos(\pi) - \cos(0)] \\ &= -\frac{1}{\pi} [-1 - 1] \\ &= -\frac{1}{\pi} (-2) = \frac{2}{\pi} \end{split}$$

Следовательно:

$$\lim_{n\to\infty}\frac{\pi}{n}\sum_{k=1}^n\sin\frac{k\pi}{n}=\pi\cdot\frac{2}{\pi}=2$$

Ответ: 2

6. Запишите номера всех верных формулировок определения интеграла Римана.

Пусть $\sigma_{\tau}(f,\xi)$ - интегральная сумма функции $f:[a,b]\to\mathbb{R}$, отвечающая оснащенному разбиению (τ,ξ) отрезка [a,b]. Тогда интегралом Римана от функции f по отрезку [a,b] называется такое число I, что:

a)
$$\exists \varepsilon > 0: \ \forall \delta > 0$$
 if $\forall (\tau, \xi): \ \lambda(\tau) \to 0 \Rightarrow |I - \sigma_{\tau}(f, \xi)| < \varepsilon$

6)
$$\forall \varepsilon > 0 \; \exists \delta > 0: \; \forall (\tau, \xi): \; \lambda(\tau) \to 0 \Rightarrow |I - \sigma_{\tau}(f, \xi)| < \varepsilon$$

B)
$$\forall \varepsilon > 0 \ \exists \delta > 0: \ \exists (\tau, \xi): \ \lambda(\tau) \to 0 \Rightarrow |I - \sigma_{\tau}(f, \xi)| < \varepsilon$$

$$\mathrm{r)}\;\forall \varepsilon>0\;\exists (\tau^n,\xi^n):\lambda(\tau^n)\overset{n\to\infty}{\to}0\;\;\mathrm{и}\;\;|\sigma_{\tau^n}(f,\xi^n)-I|<\varepsilon$$

д)
$$\forall (\tau^n, \xi^n): \ \lambda(\tau^n) \overset{n \to \infty}{\to} 0 \Rightarrow \sigma_{\tau^n}(f, \xi^n) \overset{n \to \infty}{\to} I$$

Решение:

Интеграл Римана от функции f по отрезку [a,b] существует и равен I, если:

$$\forall \varepsilon > 0 \ \exists \delta > 0: \ \forall (\tau, \xi) \ \left(\lambda(\tau) < \delta \Rightarrow |\sigma_{\tau(f, \xi)} - I| < \varepsilon \right)$$

Проанализируем каждый вариант:

a)
$$\exists \varepsilon > 0: \ \forall \delta > 0$$
 и $\forall (\tau, \xi): \ \lambda(\tau) \to 0 \Rightarrow |I - \sigma_{\tau}(f, \xi)| < \varepsilon$

НЕВЕРНО - некорректная логическая структура: существует ε , для которого при любом δ условие выполняется.

6)
$$\forall \varepsilon > 0 \; \exists \delta > 0 : \; \forall (\tau, \xi) : \; \lambda(\tau) \to 0 \Rightarrow |I - \sigma_{\tau}(f, \xi)| < \varepsilon$$

НЕВЕРНО - запись " $\lambda(\tau) \to 0$ " должна быть условием " $\lambda(\tau) < \delta$ ", а не следствием.

$$\mathrm{B})\;\forall \varepsilon>0\;\exists \delta>0:\;\exists (\tau,\xi):\;\lambda(\tau)\to0\Rightarrow |I-\sigma_{\tau}(f,\xi)|<\varepsilon$$

НЕВЕРНО - должно быть "для всех" разбиений, а не "существует".

$$\mathrm{r)}\;\forall \varepsilon>0\;\exists (\tau^n,\xi^n):\lambda(\tau^n)\stackrel{n\to\infty}{\to}0\;\;\mathrm{и}\;\;|\sigma_{\tau^n}(f,\xi^n)-I|<\varepsilon$$

НЕВЕРНО - неполная формулировка, отсутствует предельный переход.

д)
$$\forall (\tau^n, \xi^n): \ \lambda(\tau^n) \overset{n \to \infty}{\to} 0 \Rightarrow \sigma_{\tau^n}(f, \xi^n) \overset{n \to \infty}{\to} I$$

ВЕРНО - это корректная секвенциальная формулировка определения интеграла Римана: для любой последовательности оснащенных разбиений с диаметром, стремящимся к нулю, соответствующие интегральные суммы стремятся к I.

Ответ: д)

КР 1. Вариант 5.

1. Вычислить площадь фигуры, ограниченной данными кривыми

$$y = \frac{x}{1+x^2}, \quad y = 0, \quad x = 4$$

Решение:

Фигура ограничена кривой $y=\frac{x}{1+x^2}$, осью x (т.е. y=0) и прямой x=4. Поскольку функция $y=\frac{x}{1+x^2}$ положительна при x>0, площадь равна:

$$S = \int_0^4 \frac{x}{1+x^2} dx$$

Для вычисления интеграла используем замену $u=1+x^2$, тогда du=2xdx, откуда $xdx=\frac{1}{2}du$.

При x=0: u=1 При x=4: u=1+16=17

$$S = \int_{1}^{17} \frac{1}{2u} du = \frac{1}{2} \int_{1}^{17} \frac{du}{u} = \frac{1}{2} \ln|u| \ |_{1}^{17} = \frac{1}{2} (\ln 17 - \ln 1) = \frac{1}{2} \ln 17$$

Ответ: $S = \frac{1}{2} \ln 17$

2. Вычислить длину дуги кривой

$$y = \ln \sin x, \quad \frac{\pi}{3} \le x \le \frac{2\pi}{3}$$

Решение:

Длина дуги кривой y = f(x) на отрезке [a, b] вычисляется по формуле:

$$L = \int_a^b \sqrt{1 + (y')^2} dx$$

Найдем производную:

$$y' = \frac{d}{dx} \ln \sin x = \frac{1}{\sin x} \cdot \cos x = \frac{\cos x}{\sin x} = \cot x$$

Тогда:

$$L = \int_{\frac{\pi}{3}}^{2\frac{\pi}{3}} \sqrt{1 + \cot^2 x} dx = \int_{\frac{\pi}{3}}^{2\frac{\pi}{3}} \sqrt{\csc^2 x} dx = \int_{\frac{\pi}{3}}^{2\frac{\pi}{3}} |\csc x| \ dx$$

На интервале $\left[\frac{\pi}{3}, \frac{2\pi}{3}\right]$ функция $\sin x > 0$, поэтому $\csc x > 0$ и $|\csc x| = \csc x$.

$$L = \int_{\frac{\pi}{3}}^{2\frac{\pi}{3}} \csc x dx = \int_{\frac{\pi}{3}}^{2\frac{\pi}{3}} \frac{dx}{\sin x}$$

Интеграл от $\csc x$:

$$\int \csc x dx = -\ln|\csc x + \cot x| + C$$

$$L=-\ln|\csc x+\cot x|\ |_{\frac{\pi}{3}}^{2\frac{\pi}{3}}$$

При
$$x = \frac{\pi}{3}$$
: $\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$, $\cos \frac{\pi}{3} = \frac{1}{2} \csc \frac{\pi}{3} = \frac{2}{\sqrt{3}}$, $\cot \frac{\pi}{3} = \frac{1}{\sqrt{3}}$

При
$$x=\frac{2\pi}{3}$$
: $\sin\frac{2\pi}{3}=\frac{\sqrt{3}}{2}$, $\cos\frac{2\pi}{3}=-\frac{1}{2}\csc\frac{2\pi}{3}=\frac{2}{\sqrt{3}}$, $\cot\frac{2\pi}{3}=-\frac{1}{\sqrt{3}}$

$$L = -\ln\left|\frac{2}{\sqrt{3}} - \frac{1}{\sqrt{3}}\right| + \ln\left|\frac{2}{\sqrt{3}} + \frac{1}{\sqrt{3}}\right| = \ln\frac{\frac{3}{\sqrt{3}}}{\frac{1}{\sqrt{3}}}) = \ln 3$$

Ответ: $L = \ln 3$

3. Вычислить несобственный интеграл

$$\int_0^{+\infty} x \cdot 2^{-4x} \ dx$$

Решение:

Преобразуем интеграл:

$$\int_{0}^{+\infty} x \cdot 2^{-4x} dx = \int_{0}^{+\infty} x \cdot \left(2^{-4}\right)^{x} dx = \int_{0}^{+\infty} x \cdot \left(\frac{1}{16}\right)^{x} dx$$

Обозначим $a = \frac{1}{16}$, тогда интеграл имеет вид:

$$\int_0^{+\infty} x a^x dx$$

Используем интегрирование по частям: $u=x,\, dv=a^x dx$ Тогда $du=dx,\, v=rac{a^x}{\ln a}$

$$\begin{split} \int_0^{+\infty} x a^x dx &= \lim_{t \to +\infty} \left[\frac{x a^x}{\ln a} \right]_0^t - \int_0^t \frac{a^x}{\ln a} dx \\ &= \lim_{t \to +\infty} \left[\frac{t a^t}{\ln a} - \frac{a^x}{(\ln a)^2} \right]_0^t \\ &= \lim_{t \to +\infty} \left[\frac{t a^t}{\ln a} - \frac{a^t}{(\ln a)^2} + \frac{1}{(\ln a)^2} \right] \end{split}$$

Поскольку $a=\frac{1}{16}<1$, то $\ln a<0$ и $\lim_{t\to+\infty}a^t=0$, а также $\lim_{t\to+\infty}ta^t=0$.

$$\int_0^{+\infty} x a^x dx = \frac{1}{(\ln a)^2}$$

Где $\ln a = \ln \frac{1}{16} = -\ln 16 = -4\ln 2$

$$\int_0^{+\infty} x \cdot 2^{-4x} dx = \frac{1}{(-4\ln 2)^2} = \frac{1}{16(\ln 2)^2}$$

Ответ: $\frac{1}{16(\ln 2)^2}$

4. Исследовать на сходимость интеграл

$$\int_{1}^{+\infty} \frac{\arctan x}{1+x^6} \ dx$$

Решение:

Исследуем поведение подынтегральной функции при $x \to +\infty$.

При $x \to +\infty$: $\arctan x \to \frac{\pi}{2}$

Поэтому:

$$rac{\arctan x}{1+x^6}\simrac{rac{\pi}{2}}{x^6}$$
 при $x o +\infty$

Исследуем интеграл:

$$\int_{1}^{+\infty} \frac{1}{x^{6}} dx = \lim_{t \to +\infty} \int_{1}^{t} x^{-6} dx = \lim_{t \to +\infty} \left[\frac{x^{-5}}{-5} \right]_{1}^{t}$$
$$= \lim_{t \to +\infty} \left[\frac{-1}{5t^{5}} + \frac{1}{5} \right] = \frac{1}{5}$$

Поскольку интеграл $\int_1^{+\infty} \frac{1}{x^6} dx$ сходится, и $\frac{\arctan x}{1+x^6} \sim \frac{C}{x^6}$ при $x \to +\infty$ (где $C = \frac{\pi}{2} > 0$), то по признаку сравнения в предельной форме исходный интеграл сходится.

Также отметим, что подынтегральная функция непрерывна на $[1, +\infty)$ и положительна, что подтверждает корректность применения признака сравнения.

Ответ: Интеграл сходится.

5. Найти предел

$$\lim_{n \to \infty} \frac{1}{\sqrt{n}} \int_{1}^{n} \ln\left(1 + \frac{1}{\sqrt{x}}\right) dx$$

Решение:

Сделаем замену переменной в интеграле: $x=nt^2$, тогда dx=2ntdt. При x=1: $t=\frac{1}{\sqrt{n}}$ При x=n: t=1

$$\int_{1}^{n} \ln\left(1 + \frac{1}{\sqrt{x}}\right) dx = \int_{\frac{1}{\sqrt{n}}}^{1} \ln\left(1 + \frac{1}{\sqrt{nt^{2}}}\right) \cdot 2nt dt$$

$$= \int_{\frac{1}{\sqrt{n}}}^{1} \ln\left(1 + \frac{1}{\sqrt{n}t}\right) \cdot 2nt dt$$

$$= 2n \int_{\frac{1}{\sqrt{n}}}^{1} t \ln\left(1 + \frac{1}{\sqrt{n}t}\right) dt$$

Тогла:

$$\frac{1}{\sqrt{n}}\int_{1}^{n}\ln\biggl(1+\frac{1}{\sqrt{x}}\biggr)dx=2\sqrt{n}\int_{\frac{1}{\sqrt{n}}}^{1}t\ln\biggl(1+\frac{1}{\sqrt{n}t}\biggr)dt$$

При $n \to \infty$ и используя асимптотику $\ln(1+u) \sim u$ при $u \to 0$:

$$t \ln \left(1 + \frac{1}{\sqrt{n}t}\right) \sim t \cdot \frac{1}{\sqrt{n}t} = \frac{1}{\sqrt{n}}$$

Поэтому:

$$2\sqrt{n}\int_{\frac{1}{\sqrt{n}}}^1\frac{1}{\sqrt{n}}dt=2\sqrt{n}\cdot\frac{1}{\sqrt{n}}\cdot\left(1-\frac{1}{\sqrt{n}}\right)=2\bigg(1-\frac{1}{\sqrt{n}}\bigg)\to 2$$

Otbet: $\lim_{n \to \infty} \frac{1}{\sqrt{n}} \int_1^n \ln \left(1 + \frac{1}{\sqrt{x}}\right) \, dx = 2$

6. Запишите номера всех верных формулировок определения интеграла Римана.

Пусть $\sigma_{\tau}(f,\xi)$ - интегральная сумма функции $f:[a,b]\to\mathbb{R}$, отвечающая оснащенному разбиению (τ,ξ) отрезка [a,b]. Тогда интегралом Римана от функции f по отрезку [a,b] называется такое число I, что:

a)
$$\forall \varepsilon > 0 \ \exists \delta > 0: \ \forall (\tau, \xi): \lambda(\tau) \to 0 \Rightarrow |I - \sigma_{\tau}(f, \xi)| < \varepsilon$$

6)
$$\forall \varepsilon > 0 \ \forall \delta > 0 \ \exists (\tau, \xi): \ \lambda(\tau) \to 0 \Rightarrow |I - \sigma_{\tau}(f, \xi)| < \varepsilon$$

в)
$$\forall \tau^n \; \exists \xi^n : \lambda(\tau^n) \overset{n \to \infty}{\to} 0 \Rightarrow \sigma_{\tau^n}(f, \xi^n) \overset{n \to \infty}{\to} I$$

r)
$$\forall (\tau^n, \xi^n) : \lambda(\tau^n) \overset{n \to \infty}{\to} 0 \Rightarrow \sigma_{\tau^n}(f, \xi^n) \overset{n \to \infty}{\to} I$$

д)
$$\forall \varepsilon > 0 \ \exists \tau^n : \forall \xi^n \Rightarrow \lambda(\tau^n) \overset{n \to \infty}{\to} 0 \ \ \text{и} \ \ |\sigma_{\tau^n}(f, \xi^n) - I| < \varepsilon$$

Решение:

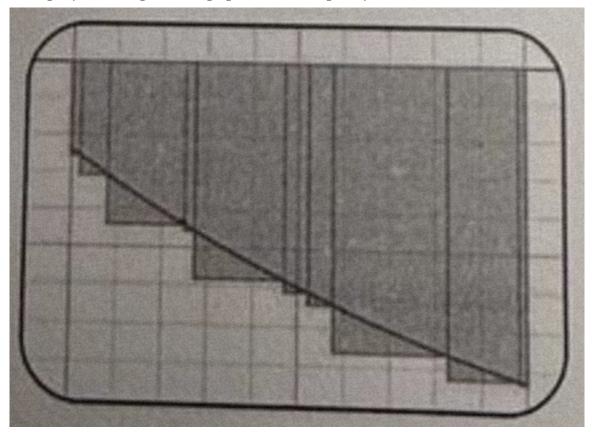
Правильное определение интеграла Римана в формулировке через ε - δ : $\forall \varepsilon>0 \; \exists \delta>0 : \forall (\tau,\xi): \lambda(\tau)<\delta \Rightarrow |I-\sigma_{\tau}(f,\xi)|<\varepsilon$

Анализируем варианты:

- а) Неверно, так как написано $\lambda(\tau) \to 0$, а должно быть $\lambda(\tau) < \delta$.
- б) Неверно, так как неправильный порядок кванторов.
- в) Неверно, поскольку не для всех разбиений существует подходящее оснащение.
- г) **Верно** это корректная формулировка через последовательности: для любой последовательности оснащенных разбиений с диаметром, стремящимся к нулю, интегральные суммы стремятся к I.
- д) Неверно, неправильная формулировка с кванторами.

Ответ: г

7. На рисунке изображены графики и некоторой суммы.



Запишите, какая сумма это может быть? В ответе можно указать несколько вариантов: интегральная сумма, верхняя сумма Дарбу, нижняя сумма Дарбу или никакая из них. Ответ обязательно прокомментируйте.

8. Приведите пример функции f(x), определенной на отрезке [2,3], но не интегрируемой на нем. Обязательно прокомментируйте, почему эта функция удовлетворяет данному условию.

Решение:

Рассмотрим функцию:

$$f(x) = egin{cases} 1, & \text{если} & x & \text{рационально} \\ 0, & \text{если} & x & \text{иррационально} \end{cases}$$

Обоснование:

- 1. **Функция определена на** [2, 3]: для любого $x \in [2, 3]$ функция принимает значение 0 или 1 в зависимости от того, рационально ли x.
- 2. Функция не интегрируема:
 - Для любого разбиения отрезка [2, 3] на интервалы, каждый интервал содержит как рациональные, так и иррациональные числа (по свойству плотности множеств рациональных и иррациональных чисел).
 - Поэтому на каждом интервале $[x_{i-1},x_i]$ разбиения: $\sup f(x)=1$ (супремум достигается в рациональных точках) $\inf f(x)=0$ (инфимум достигается в иррациональных точках)
 - Верхняя сумма Дарбу: $\overline{S} = \sum_{i=1}^n 1 \cdot \Delta x_i = 3-2=1$

- Нижняя сумма Дарбу: $\underline{S} = \sum_{i=1}^n 0 \cdot \Delta x_i = 0$
- 3. **Условие интегрируемости не выполнено**: поскольку $\overline{S}-\underline{S}=1-0=1\neq 0$, функция не интегрируема по Риману.

Ответ: Функция Дирихле на отрезке [2,3] не интегрируема, поскольку разность верхней и нижней сумм Дарбу не стремится к нулю при измельчении разбиения.

КР 1. Вариант 9.

1. Вычислить площадь фигуры, ограниченной данными кривыми

$$y = \frac{x}{1+3x^2}, \quad y = 0, \quad x = 2$$

Решение:

Фигура ограничена кривой $y=\frac{x}{1+3x^2}$, осью x (т.е. y=0) и прямой x=2. Поскольку функция $y=\frac{x}{1+3x^2}$ положительна при x>0, площадь равна:

$$S = \int_0^2 \frac{x}{1 + 3x^2} dx$$

Для вычисления интеграла используем замену $u=1+3x^2$, тогда du=6xdx, откуда $xdx=\frac{1}{6}du$.

При x=0: $u=1+3\cdot 0^2=1$ При x=2: $u=1+3\cdot 4=13$

$$S = \int_{1}^{13} \frac{1}{6u} du = \frac{1}{6} \int_{1}^{13} \frac{du}{u} = \frac{1}{6} \ln|u| \mid_{1}^{13} = \frac{1}{6} (\ln 13 - \ln 1) = \frac{1}{6} \ln 13$$

Ответ: $S = \frac{1}{6} \ln 13$

2. Вычислить длину дуги кривой

$$x = \ln \cos y, \quad 0 \le y \le \frac{\pi}{3}$$

Решение:

Для параметрически заданной кривой x = x(y) длина дуги вычисляется по формуле:

$$L = \int_{a}^{b} \sqrt{1 + \left(\frac{dx}{dy}\right)^2} dy$$

Найдем производную:

$$\frac{dx}{dy} = \frac{d}{dy}\ln\cos y = \frac{1}{\cos y} \cdot (-\sin y) = -\frac{\sin y}{\cos y} = -\tan y$$

Тогда:

$$\begin{split} L &= \int_0^{\frac{\pi}{3}} \sqrt{1 + (-\tan y)^2} dy = \int_0^{\frac{\pi}{3}} \sqrt{1 + \tan^2 y} dy = \int_0^{\frac{\pi}{3}} \sqrt{\sec^2 y} dy \\ &= \int_0^{\frac{\pi}{3}} |\sec y| \ dy = \int_0^{\frac{\pi}{3}} \sec y dy \end{split}$$

(поскольку на интервале $\left[0,\frac{\pi}{3}\right]$ функция $\cos y>0$, то $\sec y>0$)

Интеграл от $\sec y$:

$$\int \sec y dy = \ln|\sec y + \tan y| + C$$

$$L = \ln|\sec y + \tan y| \mid_0^{\frac{\pi}{3}}$$

При y=0: $\sec 0=1$, $\tan 0=0$, поэтому $\sec 0+\tan 0=1$

При $y=\frac{\pi}{3}$: $\sec\frac{\pi}{3}=\frac{1}{\cos\frac{\pi}{3}}=\frac{1}{\frac{1}{2}}=2$, $\tan\frac{\pi}{3}=\sqrt{3}$ Поэтому $\sec\frac{\pi}{3}+\tan\frac{\pi}{3}=2+\sqrt{3}$

$$L = \ln\!\left(2 + \sqrt{3}\right) - \ln\!\left(1\right) = \ln\!\left(2 + \sqrt{3}\right)$$

Ответ: $L = \ln \left(2 + \sqrt{3}\right)$

3. Вычислить несобственный интеграл

$$\int_0^{+\infty} x \cdot e^{-3x} \ dx$$

Решение:

Используем интегрирование по частям: $u=x,\,dv=e^{-3x}dx$ Тогда $du=dx,\,v=-\frac{1}{3}e^{-3x}$

$$\begin{split} \int_0^{+\infty} x e^{-3x} dx &= \lim_{t \to +\infty} \left[x \cdot \left(-\frac{1}{3} e^{-3x} \right) \right]_0^t - \int_0^t \left(-\frac{1}{3} e^{-3x} \right) dx \\ &= \lim_{t \to +\infty} \left[-\frac{t}{3} e^{-3t} + 0 \right] + \frac{1}{3} \int_0^t e^{-3x} dx \\ &= \lim_{t \to +\infty} \left[-\frac{t}{3} e^{-3t} \right] + \frac{1}{3} \lim_{t \to +\infty} \left[-\frac{1}{3} e^{-3t} \right]_0^t \\ &= \lim_{t \to +\infty} \left[-\frac{t}{3} e^{-3t} \right] + \frac{1}{3} \lim_{t \to +\infty} \left[-\frac{1}{3} e^{-3t} + \frac{1}{3} \right] \end{split}$$

Поскольку $\lim_{t\to +\infty}te^{-3t}=0$ (экспонента убывает быстрее любой степени), получаем:

$$= 0 + \frac{1}{3} \cdot \frac{1}{3} = \frac{1}{9}$$

Ответ: $\int_0^{+\infty} x \cdot e^{-3x} \ dx = \frac{1}{9}$

4. Исследовать на сходимость интеграл

$$\int_{1}^{+\infty} \frac{2x + \sin x}{x^3 + 1} \ dx$$

Решение:

Разложим подынтегральную функцию на две части:

$$\frac{2x + \sin x}{x^3 + 1} = \frac{2x}{x^3 + 1} + \frac{\sin x}{x^3 + 1}$$

Исследуем каждую часть отдельно.

Первая часть: $\frac{2x}{x^3+1}$

При
$$x \to +\infty$$
: $\frac{2x}{x^3+1} \sim \frac{2x}{x^3} = \frac{2}{x^2}$

Интеграл $\int_1^{+\infty} \frac{1}{x^2} dx$ сходится, поэтому $\int_1^{+\infty} \frac{2x}{x^3+1} dx$ сходится.

Вторая часть: $\frac{\sin x}{x^3+1}$

Поскольку $|\sin x| \le 1$ для всех x, имеем:

$$\left|\frac{\sin x}{x^3+1}\right| \le \frac{1}{x^3+1}$$

При
$$x \to +\infty$$
: $\frac{1}{x^3+1} \sim \frac{1}{x^3}$

Интеграл $\int_1^{+\infty} \frac{1}{x^3} dx$ сходится, поэтому по признаку сравнения интеграл $\int_1^{+\infty} \frac{\sin x}{x^3+1} dx$ абсолютно сходится.

Заключение: Поскольку оба интеграла сходятся, исходный интеграл сходится как сумма сходящихся интегралов.

Альтернативное решение через оценку всей функции: При $x \to +\infty$:

$$\frac{2x + \sin x}{x^3 + 1} \le \frac{2x + 1}{x^3 + 1} \le \frac{3x}{x^3} = \frac{3}{x^2}$$

Поскольку $\int_1^{+\infty} \frac{1}{x^2} dx$ сходится, то исходный интеграл сходится по признаку сравнения.

Ответ: Интеграл сходится.

КР 2. Вариант ?.

1. Посчитать сумму ряда

$$\sum_{n=1}^{\infty} \frac{2 + \sin n}{n\sqrt{n+2}}$$

Решение:

Данный ряд можно разложить на сумму двух рядов:

$$\sum_{n=1}^{\infty} \frac{2 + \sin n}{n\sqrt{n+2}} = \sum_{n=1}^{\infty} \frac{2}{n\sqrt{n+2}} + \sum_{n=1}^{\infty} \frac{\sin n}{n\sqrt{n+2}}$$

Первый ряд: $\sum_{n=1}^{\infty} rac{2}{n\sqrt{n+2}}$

При
$$n o \infty$$
: $\frac{2}{n\sqrt{n+2}} \sim \frac{2}{n\sqrt{n}} = \frac{2}{n^{\frac{3}{2}}}$

Поскольку ряд $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}$ сходится (p-ряд с $p=\frac{3}{2}>1$), первый ряд сходится.

Второй ряд: $\sum_{n=1}^{\infty} rac{\sin n}{n\sqrt{n+2}}$

Поскольку $|\sin n| \le 1$, имеем:

$$\left|\frac{\sin n}{n\sqrt{n+2}}\right| \le \frac{1}{n\sqrt{n+2}} \sim \frac{1}{n^{\frac{3}{2}}}$$

По признаку сравнения второй ряд абсолютно сходится.

Вычисление точной суммы невозможно в элементарных функциях из-за наличия $\sin n$ с иррациональными аргументами.

Ответ: Ряд сходится, но точная сумма не выражается в элементарных функциях.

2. Посчитать сумму ряда

$$\sum_{n=1}^{\infty} \frac{n! + 5}{n+5}$$

Решение:

Исследуем поведение общего члена ряда при $n \to \infty$:

$$a_n = \frac{n! + 5}{n + 5}$$

При больших n: $n! \gg 5$ и $n+5 \sim n$, поэтому:

$$a_n \sim \frac{n!}{n} = (n-1)!$$

Поскольку $(n-1)! \to +\infty$ при $n \to \infty$, общий член ряда не стремится к нулю.

По необходимому условию сходимости ряда: если ряд $\sum a_n$ сходится, то $\lim_{n\to\infty}a_n=0.$

Поскольку $\lim_{n\to\infty}a_n=\lim_{n\to\infty}\frac{n!+5}{n+5}=+\infty\neq 0$, ряд расходится.

Ответ: Ряд расходится (не выполняется необходимое условие сходимости).

3. Посчитать сумму ряда

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n^2+2}}$$

Решение:

 Это знакочередующийся ряд вида $\sum_{n=1}^{\infty}{(-1)^nb_n},$ где $b_n=\frac{1}{\sqrt{n^2+2}}.$

Проверим условия признака Лейбница:

- 1) $b_n > 0$ для всех $n \ge 1$ 🗸
- 2) Последовательность b_n убывает: $b_n = \frac{1}{\sqrt{n^2+2}}$ убывает при $n \to \infty$ \checkmark

3)
$$\lim_{n\to\infty} b_n = \lim_{n\to\infty} \frac{1}{\sqrt{n^2+2}} = 0$$
 ~

По признаку Лейбница ряд сходится условно.

Вычисление точной суммы:

Данный ряд не является стандартным рядом, для которого известна точная сумма.

Можно получить приближенное значение, используя несколько первых членов:

$$S \approx -\frac{1}{\sqrt{3}} + \frac{1}{\sqrt{6}} - \frac{1}{\sqrt{11}} + \frac{1}{\sqrt{18}} - \dots$$

Ответ: Ряд сходится условно по признаку Лейбница, точная сумма не выражается в элементарных функциях.

4. Посчитать сумму ряда

$$\sum_{n=1}^{\infty} \frac{\cos n}{(n+1)\ln^2 n}$$

Решение:

Примечание: Ряд определен начиная с n=2, поскольку $\ln 1=0$ и знаменатель обращается в ноль при n=1.

Рассмотрим ряд:

$$\sum_{n=2}^{\infty} \frac{\cos n}{(n+1)\ln^2 n}$$

Исследование сходимости:

Поскольку $|\cos n| \le 1$, имеем:

$$\left| \frac{\cos n}{(n+1)\ln^2 n} \right| \le \frac{1}{(n+1)\ln^2 n}$$

При
$$n o \infty$$
: $\frac{1}{(n+1)\ln^2 n} \sim \frac{1}{n\ln^2 n}$

По интегральному признаку исследуем интеграл:

$$\int_{2}^{\infty} \frac{dx}{x \ln^2 x}$$

Используем замену $u=\ln x,\,du=rac{dx}{x}$:

$$\int_{\ln 2}^{\infty} \frac{du}{u^2} = \left[-\frac{1}{u} \right]_{\ln 2}^{\infty} = 0 - \left(-\frac{1}{\ln 2} \right) = \frac{1}{\ln 2}$$

Интеграл сходится, следовательно, ряд $\sum_{n=2}^{\infty}\frac{1}{(n+1)\ln^2 n}$ сходится.

По признаку сравнения исходный ряд абсолютно сходится.

Точная сумма не выражается в элементарных функциях из-за наличия $\cos n$.

Ответ: Ряд сходится абсолютно (начиная с n=2), точная сумма не выражается в элементарных функциях.

5. Посчитать сумму ряда

$$\sum_{n=1}^{\infty} (-1)^{n+1} e^{-n}$$

Решение:

Преобразуем ряд:

$$\sum_{n=1}^{\infty} (-1)^{n+1} e^{-n} = \sum_{n=1}^{\infty} (-1)^{n+1} \cdot \frac{1}{e^n}$$

Поскольку $(-1)^{n+1} = -(-1)^n$, получаем:

$$= -\sum_{n=1}^{\infty} (-1)^n \cdot \frac{1}{e^n} = -\sum_{n=1}^{\infty} \left(-\frac{1}{e} \right)^n$$

Это геометрический ряд со знаменателем $q=-\frac{1}{e}.$

Поскольку $|q|=rac{1}{e}<1$, ряд сходится и его сумма равна:

$$\sum_{n=1}^{\infty} q^n = \frac{q}{1-q}$$

где $q=-rac{1}{e}.$

$$-\sum_{n=1}^{\infty} \left(-\frac{1}{e} \right)^n = -\frac{-\frac{1}{e}}{1 - \left(-\frac{1}{e} \right)} = -\frac{-\frac{1}{e}}{1 + \frac{1}{e}} = \frac{\frac{1}{e}}{1 + \frac{1}{e}}$$
$$= \frac{\frac{1}{e}}{\frac{e+1}{e}} = \frac{1}{e} \cdot \frac{e}{e+1} = \frac{1}{e+1}$$

Ответ: $\sum_{n=1}^{\infty} (-1)^{n+1} e^{-n} = \frac{1}{e+1}$

КР 1. Вариант ?.

1. Вычислить площадь фигуры, ограниченной данными кривыми

$$y = xe^{-2x}, \quad y = 0, \quad x = 2$$

Решение:

Фигура ограничена кривой $y=xe^{-2x}$, осью x (т.е. y=0) и прямой x=2. Поскольку функция $y=xe^{-2x}$ положительна при x>0, площадь равна:

$$S = \int_0^2 x e^{-2x} dx$$

Используем интегрирование по частям: $u=x,\,dv=e^{-2x}dx$ Тогда $du=dx,\,v=-\frac{1}{2}e^{-2x}$

$$\begin{split} S &= \left[x \cdot \left(-\frac{1}{2} e^{-2x} \right) \right]_0^2 - \int_0^2 \left(-\frac{1}{2} e^{-2x} \right) dx \\ &= \left[-\frac{x}{2} e^{-2x} \right]_0^2 + \frac{1}{2} \int_0^2 e^{-2x} dx \\ &= \left[-\frac{2}{2} e^{-4} - 0 \right] + \frac{1}{2} \left[-\frac{1}{2} e^{-2x} \right]_0^2 \\ &= -e^{-4} + \frac{1}{2} \left[-\frac{1}{2} e^{-4} + \frac{1}{2} \right] \\ &= -e^{-4} + \frac{1}{2} \left[-\frac{1}{2} e^{-4} + \frac{1}{2} \right] \\ &= -e^{-4} - \frac{1}{4} e^{-4} + \frac{1}{4} \\ &= -\frac{5}{4} e^{-4} + \frac{1}{4} = \frac{1}{4} (1 - 5 e^{-4}) \end{split}$$

Ответ: $S = \frac{1}{4}(1 - 5e^{-4})$

2. Вычислить длину дуги кривой

$$y = \ln \sin x, \quad \frac{\pi}{3} \le x \le \frac{2\pi}{3}$$

Решение:

Длина дуги кривой y = f(x) на отрезке [a, b] вычисляется по формуле:

$$L = \int_{a}^{b} \sqrt{1 + \left(y'\right)^2} dx$$

Найдем производную:

$$y' = \frac{d}{dx} \ln \sin x = \frac{1}{\sin x} \cdot \cos x = \frac{\cos x}{\sin x} = \cot x$$

Тогда:

$$L = \int_{\frac{\pi}{2}}^{2\frac{\pi}{3}} \sqrt{1 + \cot^2 x} dx = \int_{\frac{\pi}{2}}^{2\frac{\pi}{3}} \sqrt{\csc^2 x} dx = \int_{\frac{\pi}{2}}^{2\frac{\pi}{3}} |\csc x| \ dx$$

На интервале $\left[\frac{\pi}{3}, \frac{2\pi}{3}\right]$ функция $\sin x > 0$, поэтому $\csc x > 0$ и $|\csc x| = \csc x$.

$$L = \int_{\frac{\pi}{2}}^{2\frac{\pi}{3}} \csc x dx = \int_{\frac{\pi}{2}}^{2\frac{\pi}{3}} \frac{dx}{\sin x}$$

Интеграл от $\csc x$:

$$\int \csc x dx = -\ln|\csc x + \cot x| + C$$

$$L = -\ln|\csc x + \cot x| \mid_{\frac{\pi}{3}}^{\frac{2\pi}{3}}$$

При
$$x=\frac{\pi}{3}$$
: $\sin\frac{\pi}{3}=\frac{\sqrt{3}}{2}$, $\cos\frac{\pi}{3}=\frac{1}{2}\csc\frac{\pi}{3}=\frac{2}{\sqrt{3}}$, $\cot\frac{\pi}{3}=\frac{1}{\sqrt{3}}$ При $x=\frac{2\pi}{3}$: $\sin\frac{2\pi}{3}=\frac{\sqrt{3}}{2}$, $\cos\frac{2\pi}{3}=-\frac{1}{2}\csc\frac{2\pi}{3}=\frac{2}{\sqrt{3}}$, $\cot\frac{2\pi}{3}=-\frac{1}{\sqrt{3}}$
$$L=-\ln|\frac{2}{\sqrt{3}}-\frac{1}{\sqrt{3}}|+\ln|\frac{2}{\sqrt{3}}+\frac{1}{\sqrt{3}}|$$

$$=-\ln|\frac{1}{\sqrt{3}}|+\ln|\frac{3}{\sqrt{3}}|=-\ln\frac{1}{\sqrt{3}}+\ln\sqrt{3}=\ln\sqrt{3}+\ln\sqrt{3}=2\ln\sqrt{3}=\ln3$$

Ответ: $L = \ln 3$

3. Вычислить несобственный интеграл

$$\int_{-\infty}^{1} x \cdot e^{2x} \ dx$$

Решение:

Этот несобственный интеграл имеет особенность при $x \to -\infty$:

$$\int_{-\infty}^{1} xe^{2x} dx = \lim_{a \to -\infty} \int_{a}^{1} xe^{2x} dx$$

Используем интегрирование по частям: $u=x,\,dv=e^{2x}dx$ Тогда $du=dx,\,v=\frac{1}{2}e^{2x}dx$

$$\int xe^{2x}dx = x \cdot \frac{1}{2}e^{2x} - \int \frac{1}{2}e^{2x}dx = \frac{x}{2}e^{2x} - \frac{1}{4}e^{2x} + C$$
$$= \frac{e^{2x}}{4}(2x - 1) + C$$

Теперь вычисляем несобственный интеграл:

$$\begin{split} \lim_{a\to-\infty} \int_a^1 x e^{2x} dx &= \lim_{a\to-\infty} \left[\frac{e^{2x}}{4}(2x-1)\right]_a^1 \\ &= \lim_{a\to-\infty} \left[\frac{e^2}{4}(2-1) - \frac{e^{2a}}{4}(2a-1)\right] \end{split}$$

$$= \frac{e^2}{4} - \lim_{a \to -\infty} \frac{e^{2a}}{4} (2a - 1)$$

При $a \to -\infty$: $e^{2a} \to 0$ быстрее, чем $(2a-1) \to -\infty$, поэтому:

$$\lim_{a \to -\infty} e^{2a}(2a - 1) = 0$$

Следовательно:

$$\int_{-\infty}^{1} xe^{2x} dx = \frac{e^2}{4}$$

Ответ: $\int_{-\infty}^{1} x \cdot e^{2x} \ dx = \frac{e^2}{4}$

4. Исследовать на сходимость интеграл

$$\int_0^1 \frac{\sin x}{x\sqrt{x}} \ dx$$

Решение:

Данный интеграл является несобственным интегралом второго рода с особенностью в точке x=0:

$$\int_{0}^{1} \frac{\sin x}{x\sqrt{x}} dx = \lim_{a \to 0^{+}} \int_{a}^{1} \frac{\sin x}{x^{\frac{3}{2}}} dx$$

Исследование поведения подынтегральной функции при $x \to 0^+$:

Используем разложение $\sin x = x - \frac{x^3}{6} + O(x^5)$ при $x \to 0$:

$$\frac{\sin x}{x^{\frac{3}{2}}} = \frac{x - \frac{x^3}{6} + O(x^5)}{x^{\frac{3}{2}}} = \frac{1}{x^{\frac{1}{2}}} - \frac{x^{\frac{3}{2}}}{6x^{\frac{3}{2}}} + O(x^{\frac{7}{2} - \frac{3}{2}})$$
$$= \frac{1}{\sqrt{x}} - \frac{1}{6} + O(x^2)$$

При $x \to 0^+$ главный член асимптотики: $\frac{\sin x}{x^{\frac{3}{2}}} \sim \frac{1}{\sqrt{x}}$

Исследование сходимости:

$$\int_0^1 \frac{1}{\sqrt{x}} dx = \int_0^1 x^{\frac{-1}{2}} dx$$

Это интеграл вида $\int_0^1 x^{-p} dx$ с $p = \frac{1}{2} < 1$.

По признаку сходимости таких интегралов: интеграл сходится, если p < 1.

Поскольку $p=\frac{1}{2}<1$, интеграл $\int_0^1 \frac{1}{\sqrt{x}} dx$ сходится.

Вычисление:

$$\int_{0}^{1} x^{-\frac{1}{2}} dx = \left[2\sqrt{x}\right]_{0}^{1} = 2 - 0 = 2$$

По признаку сравнения в предельной форме: поскольку

$$\lim_{x \to 0^+} \frac{\frac{\sin x}{x^{\frac{3}{2}}}}{\frac{1}{\sqrt{x}}} = \lim_{x \to 0^+} \frac{\sin x}{x} = 1$$

и интеграл $\int_0^1 \frac{1}{\sqrt{x}} dx$ сходится, то исходный интеграл тоже сходится.

Ответ: Интеграл сходится.

КР 1. Вариант 12.

1. Вычислить площадь фигуры, ограниченной данными кривыми

$$y = \cos x \sin^3 x, \quad y = 0, \quad x = \frac{\pi}{2}$$

Решение:

Функция $y=\cos x\sin^3 x$ определена на интервале $\left[0,\frac{\pi}{2}\right]$, так как при $x=\frac{\pi}{2}$ получаем y=0.

На интервале $\left[0,\frac{\pi}{2}\right]$ функция неотрицательна, поэтому площадь вычисляется как:

$$S = \int_0^{\frac{\pi}{2}} \cos x \sin^3 x \ dx$$

Используем замену переменной: пусть $u = \sin x$, тогда $du = \cos x \ dx$.

При x=0: $u=\sin 0=0$ При $x=\frac{\pi}{2}$: $u=\sin \left(\frac{\pi}{2}\right)=1$

$$S = \int_0^1 u^3 \ du = \left[\frac{u^4}{4} \right]_0^1 = \frac{1^4}{4} - \frac{0^4}{4} = \frac{1}{4}$$

Ответ: $S = \frac{1}{4}$

2. Вычислить длину дуги кривой

$$y = \ln(x^2 - 1), \quad 2 \le x \le 5$$

Решение:

Длина дуги кривой вычисляется по формуле:

$$L = \int_a^b \sqrt{1 + \left(y'\right)^2} \ dx$$

Найдем производную:

$$y' = \frac{d}{dx}[\ln(x^2 - 1)] = \frac{1}{x^2 - 1} \cdot 2x = \frac{2x}{x^2 - 1}$$

Вычислим $\left(y'\right)^2$:

$$(y')^2 = \left(\frac{2x}{x^2 - 1}\right)^2 = \frac{4x^2}{(x^2 - 1)^2}$$

Найдем подкоренное выражение:

$$1 + (y')^2 = 1 + \frac{4x^2}{\left(x^2 - 1\right)^2} = \frac{\left(x^2 - 1\right)^2 + 4x^2}{\left(x^2 - 1\right)^2} = \frac{x^4 - 2x^2 + 1 + 4x^2}{\left(x^2 - 1\right)^2} = \frac{x^4 + 2x^2 + 1}{\left(x^2 - 1\right)^2} = \frac{\left(x^2 + 1\right)^2}{\left(x^2 - 1\right)^2}$$

Тогда:

$$\sqrt{1 + (y')^2} = \frac{x^2 + 1}{x^2 - 1}$$

Длина дуги:

$$L = \int_{2}^{5} \frac{x^{2} + 1}{x^{2} - 1} dx = \int_{2}^{5} \left(1 + \frac{2}{x^{2} - 1} \right) dx$$

Для вычисления $\int \frac{2}{x^2-1} dx$ используем разложение на простые дроби:

$$\frac{2}{x^2-1} = \frac{2}{(x-1)(x+1)} = \frac{1}{x-1} - \frac{1}{x+1}$$

$$L = \int_2^5 \left(1 + \frac{1}{x-1} - \frac{1}{x+1}\right) \, dx = [x + \ln|x-1| - \ln|x+1]_2^5$$

$$L = \left[x + \ln|\frac{x-1}{x+1}\right]_2^5 = \left(5 + \ln\frac{4}{6}\right) - \left(2 + \ln\frac{1}{3}\right) = 3 + \ln\frac{4}{6} - \ln\frac{1}{3} = 3 + \ln\frac{4 \cdot 3}{6 \cdot 1} = 3 + \ln 2$$

Ответ: $L = 3 + \ln 2$

3. Вычислить несобственный интеграл

$$\int_{1}^{+\infty} \frac{\ln x}{x^4} \ dx$$

Решение:

Используем интегрирование по частям. Пусть:

$$u = \ln x, \quad dv = \frac{1}{x^4} dx = x^{-4} dx$$
 $du = \frac{1}{x} dx, \quad v = \int x^{-4} dx = \frac{x^{-3}}{-3} = -\frac{1}{3x^3}$

По формуле интегрирования по частям:

$$\int \frac{\ln x}{x^4} dx = uv - \int v \ du = \ln x \cdot \left(-\frac{1}{3x^3} \right) - \int \left(-\frac{1}{3x^3} \right) \cdot \frac{1}{x} dx$$

$$= -\frac{\ln x}{3x^3} + \frac{1}{3} \int \frac{1}{x^4} dx = -\frac{\ln x}{3x^3} + \frac{1}{3} \cdot \left(-\frac{1}{3x^3} \right) = -\frac{\ln x}{3x^3} - \frac{1}{9x^3}$$

$$= -\frac{3\ln x + 1}{9x^3}$$

Вычислим несобственный интеграл:

$$\begin{split} & \int_{1}^{+\infty} \frac{\ln x}{x^4} dx = \lim_{t \to +\infty} \left[-\frac{3 \ln x + 1}{9x^3} \right]_{1}^{t} \\ & = \lim_{t \to +\infty} \left(-\frac{3 \ln t + 1}{9t^3} - \left(-\frac{3 \ln 1 + 1}{9 \cdot 1^3} \right) \right) \\ & = \lim_{t \to +\infty} \left(-\frac{3 \ln t + 1}{9t^3} \right) + \frac{1}{9} \end{split}$$

При $t \to +\infty$: $\frac{3 \ln t + 1}{9t^3} \to 0$ (степенная функция растет быстрее логарифмической)

Otbet: $\int_1^{+\infty} \frac{\ln x}{x^4} dx = \frac{1}{9}$

4. Исследовать на сходимость интеграл

$$\int_0^1 \frac{\sin^5 x}{(3+x^2)x^{\frac{11}{2}}} \ dx$$

Решение:

Данный интеграл является несобственным интегралом 2-го рода, так как подынтегральная функция имеет особенность при x=0 (знаменатель содержит $x^{\frac{11}{2}}$).

Исследуем поведение подынтегральной функции при $x \to 0^+$:

$$f(x) = \frac{\sin^5 x}{(3+x^2)x^{\frac{11}{2}}}$$

При $x \to 0^+$:

- $\sin^5 x \sim x^5$ (используем эквивалентность $\sin x \sim x$ при $x \to 0$)
- $3 + x^2 \to 3$ $x^{\frac{11}{2}} = x^{\frac{11}{2}}$

Поэтому:

$$f(x) \sim rac{x^5}{3 \cdot x^{rac{11}{2}}} = rac{x^5}{3x^{rac{11}{2}}} = rac{1}{3x^{rac{11}{2}-5}} = rac{1}{3x^{rac{1}{2}}} = rac{1}{3\sqrt{x}}$$

Исследуем сходимость интеграла $\int_0^1 \frac{1}{\sqrt{x}} dx$:

$$\begin{split} \int_0^1 \frac{1}{\sqrt{x}} dx &= \int_0^1 x^{-\frac{1}{2}} dx = \lim_{\varepsilon \to 0^+} \left[\frac{x^{\frac{1}{2}}}{\frac{1}{2}} \right]_{\varepsilon}^1 = \lim_{\varepsilon \to 0^+} \left[2\sqrt{x} \right]_{\varepsilon}^1 \\ &= \lim_{\varepsilon \to 0^+} \left(2\sqrt{1} - 2\sqrt{\varepsilon} \right) = 2 - 0 = 2 \end{split}$$

Поскольку интеграл $\int_0^1 \frac{1}{\sqrt{x}} dx$ сходится, и наша функция f(x) ведет себя как $\frac{1}{3\sqrt{x}}$ при $x \to 0^+$, то по предельному признаку сравнения данный интеграл сходится.

Ответ: Интеграл сходится.

КР 1. Варианты 1 - 4.

1. Вычислить неопределенный интеграл

$$\int \frac{dx}{\sin^2 x}$$

Решение: Используем табличный интеграл:

$$\int \frac{dx}{\sin^2 x} = -\cot x + C$$

Ответ: $-\operatorname{ctg} x + C$

2. Вычислить неопределенный интеграл

$$\int \frac{dx}{5+x^2}$$

Решение: Приводим к стандартному виду:

$$\int \frac{dx}{5+x^2} = \frac{1}{\sqrt{5}} \arctan \frac{x}{\sqrt{5}} + C$$

Ответ: $\frac{1}{\sqrt{5}} \arctan \frac{x}{\sqrt{5}} + C$

3. Вычислить неопределенный интеграл

$$\int \frac{dx}{x^2 - 5}$$

Решение: Разложим на простейшие дроби:

$$\frac{1}{x^2 - 5} = \frac{1}{\left(x - \sqrt{5}\right)\left(x + \sqrt{5}\right)} = \frac{A}{x - \sqrt{5}} + \frac{B}{x + \sqrt{5}}$$

Решая систему, получаем:

$$\int \frac{dx}{x^2 - 5} = \frac{1}{2\sqrt{5}} \ln \left| \frac{x - \sqrt{5}}{x + \sqrt{5}} \right| + C$$

Ответ: $\frac{1}{2\sqrt{5}} \ln |\frac{x-\sqrt{5}}{x+\sqrt{5}}| + C$

4. Вычислить неопределенный интеграл

$$\int \frac{dx}{9-x^2}$$

Решение: Используем табличный интеграл:

$$\int \frac{dx}{9-x^2} = \frac{1}{6} \ln \left| \frac{3+x}{3-x} \right| + C$$

Ответ: $\frac{1}{6} \ln \left| \frac{3+x}{3-x} \right| + C$

5. Вычислить неопределенный интеграл

$$\int \frac{dx}{\cos^2 x}$$

Решение: Используем табличный интеграл:

$$\int \frac{dx}{\cos^2 x} = \operatorname{tg} x + C$$

Ответ: tg x + C

6. Вычислить неопределенный интеграл

$$\int \frac{dx}{6+x^2}$$

Решение: Приводим к стандартному виду:

$$\int \frac{dx}{6+x^2} = \frac{1}{\sqrt{6}} \arctan \frac{x}{\sqrt{6}} + C$$

Ответ: $\frac{1}{\sqrt{6}} \arctan \frac{x}{\sqrt{6}} + C$

7. Вычислить неопределенный интеграл

$$\int \frac{dx}{\sqrt{6-x^2}}$$

Решение: Используем табличный интеграл:

$$\int \frac{dx}{\sqrt{6-x^2}} = \arcsin \frac{x}{\sqrt{6}} + C$$

Ответ: $\arcsin \frac{x}{\sqrt{6}} + C$

8. Вычислить неопределенный интеграл

$$\int \frac{dx}{\sqrt{16 - x^2}}$$

Решение: Используем табличный интеграл:

$$\int \frac{dx}{\sqrt{16 - x^2}} = \arcsin \frac{x}{4} + C$$

Ответ: $\arcsin \frac{x}{4} + C$

9. Вычислить неопределенный интеграл

$$\int 0 dx$$

Решение: Интеграл от нуля равен константе:

$$\int 0 \ dx = C$$

10. Вычислить неопределенный интеграл

$$\int \frac{dx}{x^2 + 7}$$

Решение: Приводим к стандартному виду:

$$\int \frac{dx}{x^2 + 7} = \frac{1}{\sqrt{7}} \arctan \frac{x}{\sqrt{7}} + C$$

Ответ: $\frac{1}{\sqrt{7}} \arctan \frac{x}{\sqrt{7}} + C$

11. Вычислить неопределенный интеграл

$$\int \frac{dx}{x^2 - 7}$$

Решение: Аналогично заданию 3:

$$\int \frac{dx}{x^2 - 7} = \frac{1}{2\sqrt{7}} \ln |\frac{x - \sqrt{7}}{x + \sqrt{7}}| + C$$

Ответ: $\frac{1}{2\sqrt{7}} \ln |\frac{x-\sqrt{7}}{x+\sqrt{7}}| + C$

12. Вычислить неопределенный интеграл

$$\int \frac{dx}{\sqrt{x^2 + 16}}$$

Решение: Используем табличный интеграл:

$$\int \frac{dx}{\sqrt{x^2 + 16}} = \ln|x + \sqrt{x^2 + 16}| + C$$

Ответ: $\ln|x + \sqrt{x^2 + 16}| + C$

13. Вычислить неопределенный интеграл

$$\int 4^x \ dx$$

Решение: Используем формулу для интеграла от показательной функции:

$$\int 4^x \ dx = \frac{4^x}{\ln 4} + C$$

Ответ: $\frac{4^x}{\ln 4} + C$

14. Вычислить неопределенный интеграл

$$\int \frac{dx}{x^2 - 8}$$

Решение: Аналогично предыдущим:

$$\int \frac{dx}{x^2 - 8} = \frac{1}{2\sqrt{8}} \ln \left| \frac{x - \sqrt{8}}{x + \sqrt{8}} \right| + C$$

Ответ:
$$\frac{1}{2\sqrt{8}}\ln\lvert\frac{x-\sqrt{8}}{x+\sqrt{8}}\rvert+C$$

15. Вычислить неопределенный интеграл

$$\int \frac{dx}{\sqrt{x^2 - 8}}$$

Решение: Используем табличный интеграл:

$$\int \frac{dx}{\sqrt{x^2 - 8}} = \ln\lvert x + \sqrt{x^2 - 8} \rvert + C$$

Ответ:
$$\ln|x + \sqrt{x^2 - 8}| + C$$

16. Вычислить неопределенный интеграл

$$\int \frac{dx}{\sqrt{9+x^2}}$$

Решение: Используем табличный интеграл:

$$\int \frac{dx}{\sqrt{9+x^2}} = \ln|x + \sqrt{x^2 + 9}| + C$$

Ответ: $\ln|x + \sqrt{x^2 + 9}| + C$

КР 2. Вариант 1.

1. Вычислите сумму ряда:

$$\sum_{n=1}^{\infty} \frac{2}{n^2 + 4n + 3}$$

Решение: Разложим знаменатель: $n^2 + 4n + 3 = (n+1)(n+3)$ Разложим на простейшие

дроби:
$$\frac{2}{(n+1)(n+3)}=\frac{1}{n+1}-\frac{1}{n+3}$$

Частичная сумма:
$$S_N=\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+\ldots+\left(\frac{1}{N+1}-\frac{1}{N+3}\right)$$

Предел при
$$N o \infty$$
: $S = \frac{1}{2} + \frac{1}{3} = \frac{5}{6}$

Ответ: $\frac{5}{6}$

2. Исследуйте на сходимость ряд:

$$\sum_{n=1}^{\infty} \sin\left(\frac{1}{n^2 + n}\right)$$

Решение: Используем асимптотическую эквивалентность: $\sin(x) \sim x$ при $x \to 0$

Таким образом:
$$\sin\left(\frac{1}{n^2+n}\right) \sim \frac{1}{n^2+n} \sim \frac{1}{n^2}$$

Ряд $\sum \frac{1}{n^2}$ сходится (p=2>1), поэтому исходный ряд сходится.

Ответ: Ряд сходится

3. Найдите множества абсолютной и условной сходимости ряда:

$$\sum_{n=1}^{\infty} \frac{(x-2)^n}{n \cdot 3^n}$$

Решение: Применим признак Даламбера: $\lim_{n\to\infty} |\frac{\frac{(x-2)^{n+1}}{(n+1)3^{n+1}}|}{\frac{(x-2)^n}{(x-2)^n}}| = |x-2\frac{1}{3} < 1 \Rightarrow x \in (-1,5)$

2.
$$x=5$$
: $\sum_{n=0}^{\infty} \frac{3^n}{n^{3^n}} = \sum_{n=0}^{\infty} \frac{1}{n}$ - расходится

Ответ:

- Абсолютная сходимость: (-1, 5)
- Условная сходимость: $\{-1\}$

4. Разложите функцию $f(x)=rac{1}{4-x}$ в ряд Тейлора в окрестности точки $x_0=2$ и укажите область сходимости полученного ряда к f(x).

Решение: Преобразуем:
$$\frac{1}{4-x} = \frac{1}{2-(x-2)} = \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{x-2}{2}\right)^n$$

Область сходимости:
$$|\frac{x-2}{2}|<1\Rightarrow x\in(0,4)$$

Ответ: Ряд:
$$\sum_{n=0}^{\infty} \frac{(x-2)^n}{2^{n+1}}$$
 Область сходимости: $(0,4)$

5. Найти предел f(x) данной функциональной последовательности $f_{n(x)}$ при $n \to \infty$ и выяснить, будет ли эта сходимость равномерной на заданных множествах.

$$f_{n(x)} = \frac{2n+x}{n+x^2}, \quad E_1 = [0,5], \quad E_2 = \mathbb{R}$$

Решение: Поточечный предел: $f(x) = \lim_{n \to \infty} \frac{2n+x}{n+x^2} = 2$

1. Ha $E_1 = [0, 5]$:

 $\sup |\frac{2n+x}{n+x^2}-2|=\sup |\operatorname{frac}\{x-2x^2,n+x^2)| \leq \operatorname{frac}\{25+10\}\{n\} \to 0$ Сходимость равномерная

2. Ha $E_2 = \mathbb{R}$:

При $x=\sqrt{n}$: frac $\{2n+\sqrt{n}\}\{n+n\}\to 1\neq 2$ Сходимость неравномерная

Ответ: Предел: f(x)=2 На E_1 - равномерная, на E_2 - неравномерная

6. Приведите пример числового ряда, чья частичная сумма $S_{n(x)}$ не имеет предела в $\overline{\mathbb{R}}$ при $n \to \infty$.

Решение: Пример: $1 - 1 + 1 - 1 + 1 - \dots$ Частичные суммы: 1, 0, 1, 0, ... не имеют предела.

Ответ: Ряд $\sum (-1)^n$ не имеет предела частичных сумм

7. Является ли следующее условие равносильным определению *поточечной* сходимости функциональной последовательности $f_n:D\to\mathbb{R}$ к функции f на множестве D? Если нет, переформулируйте его, чтобы оно стало подходящим.

$$x \in D \ \exists \varepsilon > 0: \ \forall n_0 \ \exists n > n_0: |f_{n(x)} - f(x)| \ge \varepsilon$$

Решение: Нет, это отрицание поточечной сходимости. Правильное определение:

$$\forall x \in D \ \forall \varepsilon > 0 \ \exists n_0 : \forall n > n_0 \Rightarrow |f_{n(x)} - f(x)| < \varepsilon$$

Ответ: Нет, это условие расходимости. Для сходимости требуется $\forall \varepsilon$

8. Пусть ряд Тейлора по степеням (x-3) некоторой функции f сходится на отрезке [0,6]. Из данных множеств выберите наибольшее, на котором ряд сходится непременно к функции f(x). Обоснуйте ваш выбор.

$$\emptyset$$
 {3} [1,5] (0,6) [0,6]

Решение: Ряд сходится к функции внутри интервала сходимости (0,6). На границах x=0 и x=6 сходимость к f(x) не гарантирована.

Ответ: (0,6) - наибольшее открытое множество внутри [0,6]

КР 2. Вариант 2.

1. Найти сумму ряда

$$\sum_{n=1}^{\infty} \frac{2}{n^2 + 6n + 8}$$

Решение:

Разложим знаменатель на множители: $n^2 + 6n + 8 = (n+2)(n+4)$

Используем метод частичных дробей: $\frac{2}{(n+2)(n+4)} = \frac{A}{n+2} + \frac{B}{n+4}$

$$2 = A(n+4) + B(n+2)$$

При n=-2: 2=2A, откуда A=1 При n=-4: 2=-2B, откуда B=-1

Таким образом: $\frac{2}{n^2+6n+8} = \frac{1}{n+2} - \frac{1}{n+4}$

Тогда: $\sum_{n=1}^{\infty} \frac{2}{n^2 + 6n + 8} = \sum_{n=1}^{\infty} \left(\frac{1}{n+2} - \frac{1}{n+4} \right)$

Рассмотрим частичную сумму: $S_N = \sum_{n=1}^N \left(\frac{1}{n+2} - \frac{1}{n+4} \right)$

$$= \left(\frac{1}{3} - \frac{1}{5}\right) + \left(\frac{1}{4} - \frac{1}{6}\right) + \left(\frac{1}{5} - \frac{1}{7}\right) + \dots + \left(\frac{1}{N+2} - \frac{1}{N+4}\right)$$

Это телескопический ряд: $S_N = \frac{1}{3} + \frac{1}{4} - \frac{1}{N+3} - \frac{1}{N+4}$

$$\lim_{N \to \infty} S_N = \frac{1}{3} + \frac{1}{4} = \frac{4+3}{12} = \frac{7}{12}$$

Ответ: $\sum_{n=1}^{\infty} \frac{2}{n^2 + 6n + 8} = \frac{7}{12}$

2. Исследовать на сходимость

$$\sum_{n=0}^{\infty}\tan\!\left(\frac{1}{n^3+2n}\right)$$

Решение:

При больших n имеем $\frac{1}{n^3+2n} \to 0$, поэтому можем использовать асимптотику $\tan(x) \sim x$ при $x \to 0$.

Для $n\geq 1$ (при n=0 первый член равен $\tan(0)=0$): $\tan\left(\frac{1}{n^3+2n}\right)\sim\frac{1}{n^3+2n}$ при $n\to\infty$

Поскольку $n^3 + 2n > n^3$ для $n \ge 1$, то: $\frac{1}{n^3 + 2n} < \frac{1}{n^3}$

Ряд $\sum_{n=1}^{\infty} \frac{1}{n^3}$ сходится (это ряд Дирихле с показателем p=3>1).

Более точно, при $n \ge 1$: $n^3 \le n^3 + 2n \le 3n^3$ (для достаточно больших n)

Следовательно: $\frac{1}{3n^3} \leq \frac{1}{n^3 + 2n} \leq \frac{1}{n^3}$

Поскольку ряды $\sum_{n=1}^{\infty} \frac{1}{3n^3}$ и $\sum_{n=1}^{\infty} \frac{1}{n^3}$ сходятся, то по признаку сравнения ряд $\sum_{n=1}^{\infty} \frac{1}{n^3+2n}$ сходится.

Используя предельный признак сравнения с рядом $\sum_{n=1}^{\infty} \frac{1}{n^3}$: $\lim_{n \to \infty} \frac{\tan\left(\frac{1}{n^3+2n}\right)}{\frac{1}{n^3}} = \lim_{n \to \infty} \frac{n^3}{n^3+2n} = 1$

Поскольку предел конечен и положителен, а ряд $\sum_{n=1}^{\infty} \frac{1}{n^3}$ сходится, то исходный ряд также сходится.

Ответ: Ряд сходится.

4. Разложить в окрестностях $x_0 = -3, \,\, f(x) = \frac{1}{5+x}$

Решение:

Нужно разложить функцию $f(x)=\frac{1}{5+x}$ в ряд Тейлора в окрестности точки $x_0=-3.$

Сделаем замену переменной: t = x - (-3) = x + 3, тогда x = t - 3.

$$f(x) = \frac{1}{5+x} = \frac{1}{5+(t-3)} = \frac{1}{2+t}$$

Теперь разложим $g(t)=\frac{1}{2+t}$ в ряд Тейлора в окрестности t=0:

$$\frac{1}{2+t} = \frac{1}{2} \cdot \frac{1}{1+\frac{t}{2}} = \frac{1}{2} \sum_{n=0}^{\infty} (-1)^n \left(\frac{t}{2}\right)^n$$

где использована формула геометрической прогрессии $\frac{1}{1+u}=\sum_{n=0}^{\infty}{(-1)^nu^n}$ при |u|<1.

Таким образом:
$$\frac{1}{2+t}=\frac{1}{2}\sum_{n=0}^{\infty}{(-1)^n\frac{t^n}{2^n}}=\sum_{n=0}^{\infty}{(-1)^n\frac{t^n}{2^{n+1}}}$$

Возвращаясь к переменной x: t=x+3

$$f(x) = \frac{1}{5+x} = \sum_{n=0}^{\infty} {(-1)^n} \frac{(x+3)^n}{2^{n+1}}$$

Область сходимости: $|\frac{x+3}{2}| < 1$, то есть |x+3| < 2 или -5 < x < -1.

Ответ: $f(x) = \sum_{n=0}^{\infty} {(-1)^n} \frac{(x+3)^n}{2^{n+1}}$, область сходимости: $x \in (-5,-1)$.

КР 2. Вариант ?.

1. Вычислите сумму ряда:

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 15n + 54}$$

Решение:

Разложим знаменатель на множители: $n^2 + 15n + 54 = (n+6)(n+9)$

Применим метод частичных дробей: $\frac{1}{(n+6)(n+9)} = \frac{A}{n+6} + \frac{B}{n+9}$

$$1 = A(n+9) + B(n+6)$$

При n=-6: 1=3A, откуда $A=\frac{1}{3}$ При n=-9: 1=-3B, откуда $B=-\frac{1}{3}$

Получаем: $\frac{1}{n^2+15n+54} = \frac{1}{3} \cdot \frac{1}{n+6} - \frac{1}{3} \cdot \frac{1}{n+9} = \frac{1}{3} \left(\frac{1}{n+6} - \frac{1}{n+9} \right)$

Тогда: $\sum_{n=1}^{\infty} \frac{1}{n^2+15n+54} = \frac{1}{3} \sum_{n=1}^{\infty} \left(\frac{1}{n+6} - \frac{1}{n+9} \right)$

Это телескопический ряд. Найдем частичную сумму: $S_N = \frac{1}{3} \sum_{n=1}^N \left(\frac{1}{n+6} - \frac{1}{n+9} \right)$

$$= \tfrac{1}{3} \Big[\left(\tfrac{1}{7} - \tfrac{1}{10} \right) + \left(\tfrac{1}{8} - \tfrac{1}{11} \right) + \left(\tfrac{1}{9} - \tfrac{1}{12} \right) + \ldots + \left(\tfrac{1}{N+6} - \tfrac{1}{N+9} \right) \Big]$$

$$= \frac{1}{3} \left[\frac{1}{7} + \frac{1}{8} + \frac{1}{9} - \frac{1}{N+7} - \frac{1}{N+8} - \frac{1}{N+9} \right]$$

При
$$N o \infty$$
: $\sum_{n=1}^{\infty} \frac{1}{n^2+15n+54} = \frac{1}{3} \left(\frac{1}{7} + \frac{1}{8} + \frac{1}{9} \right) = \frac{1}{3} \cdot \frac{72+63+56}{504} = \frac{191}{1512}$

2. Исследуйте на сходимость ряд:

$$\sum_{n=1}^{\infty} \biggl(1 - \cos \biggl(\frac{1}{n^2} \biggr) \biggr)$$

Решение:

Используем асимптотическое разложение косинуса при малых аргументах: $\cos(x)=1-\frac{x^2}{2}+\frac{x^4}{24}-\dots$

При $x=\frac{1}{n^2}$: $\cos\left(\frac{1}{n^2}\right)=1-\frac{1}{2n^4}+\frac{1}{24n^8}-\dots$

Следовательно: $1 - \cos\left(\frac{1}{n^2}\right) = \frac{1}{2n^4} - \frac{1}{24n^8} + \dots$

При больших n главный член: $1-\cos\left(\frac{1}{n^2}\right)\sim\frac{1}{2n^4}$

Применим предельный признак сравнения с рядом $\sum \frac{1}{n^4} : \lim_{n \to \infty} \frac{1 - \cos\left(\frac{1}{n^2}\right)}{\frac{1}{2n^4}} = 2n^4(1-\cos\left(\frac{1}{n^2}\right))$

 $\lim_{n\to\infty} \frac{2n^4\left(1-\cos\left(\frac{1}{n^2}\right)\right)}{1} = 1$

Поскольку ряд $\sum_{n=1}^{\infty} \frac{1}{n^4}$ сходится (p-ряд с p=4>1), то по предельному признаку сравнения исходный ряд также сходится.

3. Найдите множества абсолютной и условной сходимости ряда:

$$\sum_{n=1}^{\infty} \frac{(x-7)^n}{n \cdot 2^n}$$

Решение:

 Это степенной ряд вида $\sum_{n=1}^{\infty}a_{n}(x-7)^{n},$ где $a_{n}=\frac{1}{n\cdot 2^{n}}.$

Найдем радиус сходимости по формуле Коши-Адамара:

$$R = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|a_n|}} = \frac{1}{\lim\sup_{n \to \infty} \sqrt[n]{\frac{1}{n \cdot 2^n}}}$$

$$\sqrt[n]{\frac{1}{n \cdot 2^n}} = \frac{1}{\sqrt[n]{n} \cdot 2}$$

Поскольку $\lim_{n \to \infty} \sqrt[n]{n} = 1$, получаем: $R = \frac{1}{\frac{1}{2}} = 2$

Интервал сходимости: |x-7| < 2, т.е. 5 < x < 9.

Исследуем концы интервала:

При x=5: $\sum_{n=1}^{\infty}\frac{(-2)^n}{n\cdot 2^n}=\sum_{n=1}^{\infty}\frac{(-1)^n}{n}$ - сходится условно (знакочередующийся гармонический ряд).

При x=9: $\sum_{n=1}^{\infty} \frac{2^n}{n \cdot 2^n} = \sum_{n=1}^{\infty} \frac{1}{n}$ - расходится (гармонический ряд).

Для абсолютной сходимости рассматриваем $\sum_{n=1}^{\infty} |\frac{(x-7)^n}{n\cdot 2^n}| = \sum_{n=1}^{\infty} \frac{|x-7|^n}{n\cdot 2^n}$.

Этот ряд сходится при |x-7| < 2 и расходится при $|x-7| \ge 2$.

Ответ:

- Множество абсолютной сходимости: (5, 9)
- Множество условной сходимости: {5}
- Область сходимости: [5, 9)

4. Разложите функцию $f(x) = \frac{1}{3x+2}$ в ряд Тейлора в окрестности точки $x_0 = -1$ и укажите область сходимости полученного ряда к f(x).

Решение:

Сначала вычислим $f(-1) = \frac{1}{3(-1)+2} = \frac{1}{-1} = -1$.

Преобразуем функцию: $f(x)=rac{1}{3x+2}=rac{1}{3(x+1)-1}=rac{1}{-1+3(x+1)}=rac{-1}{1-3(x+1)}$

Пусть t = x + 1, тогда $f(x) = \frac{-1}{1-3t}$.

Используем разложение $\frac{1}{1-u} = \sum_{n=0}^{\infty} u^n$ при |u| < 1:

$$\frac{-1}{1-3t} = -\sum_{n=0}^{\infty} (3t)^n = -\sum_{n=0}^{\infty} 3^n t^n$$

Подставляя
$$t = x + 1$$
: $f(x) = -\sum_{n=0}^{\infty} 3^n (x+1)^n$

Это и есть ряд Тейлора функции f(x) в окрестности точки $x_0=-1$.

Для сходимости необходимо |3(x+1)| < 1, откуда $|x+1| < \frac{1}{3}$.

Ответ:
$$f(x) = -\sum_{n=0}^{\infty} 3^n (x+1)^n$$

Область сходимости: $|x+1| < \frac{1}{3}$, т.е. $x \in \left(-\frac{4}{3}, -\frac{2}{3}\right)$.

5. Исследовать функциональный ряд на равномерную сходимость на данных множествах.

$$\sum_{n=1}^{\infty} \sin \frac{x^2}{n^2 + x^2}, \quad D_1 = [0, 10], \quad D_2 = (0, +\infty).$$

Решение:

Пусть
$$u_{n(x)}=\sin rac{x^2}{n^2+x^2}.$$

Исследование на множестве $D_1 = [0, 10]$:

Для исследования равномерной сходимости найдем $\sup_{x \in [0,10]} |u_{n(x)}|$.

Рассмотрим функцию $g(x) = \frac{x^2}{n^2 + x^2}$ на отрезке [0, 10].

$$g'(x) = \frac{2x(n^2+x^2)-x^2 \cdot 2x}{(n^2+x^2)^2} = \frac{2xn^2}{(n^2+x^2)^2} \ge 0$$

Функция g(x) возрастает на [0, 10], поэтому:

- $\min_{x \in [0,10]} g(x) = g(0) = 0$
- $\max_{x \in [0,10]} g(x) = g(10) = \frac{100}{n^2 + 100}$

Поскольку $\sin t$ возрастает на $\left[0, \frac{\pi}{2}\right]$ и $g(10) = \frac{100}{n^2+100} < 1 < \frac{\pi}{2}$ при всех $n \geq 1$:

$$\sup_{x \in [0,10]} |u_{n(x)}| = \sin\left(\frac{100}{n^2 + 100}\right)$$

При больших $n:\sin\Bigl(\frac{100}{n^2+100}\Bigr) pprox \frac{100}{n^2+100} pprox \frac{100}{n^2}$

Поскольку ряд $\sum_{n=1}^{\infty} \frac{100}{n^2}$ сходится (p-ряд с p=2>1), то по признаку Вейерштрасса функциональный ряд сходится равномерно на $D_1=[0,10]$.

Исследование на множестве $D_2=(0,+\infty)$:

Для любого n рассмотрим поведение $u_{n(x)}$ при $x \to +\infty$:

$$\lim_{x\to +\infty} u_{n(x)} = \lim_{x\to +\infty} \sin\Bigl(\tfrac{x^2}{n^2+x^2}\Bigr) = \lim_{x\to +\infty} \sin\Bigl(\tfrac{1}{\tfrac{n^2}{x^2}+1}\Bigr) = \sin(1)$$

Это означает, что для каждого фиксированного n функция $u_{n(x)} \to \sin(1) \neq 0$ при $x \to +\infty$.

Рассмотрим частичные суммы ряда: $S_{N(x)} = \sum_{n=1}^N \sin\!\left(\frac{x^2}{n^2+x^2}\right)$

При
$$x \to +\infty$$
: $S_{N(x)} \to \sum_{n=1}^N \sin(1) = N \sin(1)$

Поскольку $N\sin(1) \to +\infty$ при $N \to +\infty$, ряд расходится в каждой точке при $x \to +\infty$.

Однако для конечных значений x ряд может сходиться. Проверим сходимость в точках:

Для фиксированного
$$x>0$$
: $u_{n(x)}=\sin\Bigl(\frac{x^2}{n^2+x^2}\Bigr)\approx\frac{x^2}{n^2+x^2}\approx\frac{x^2}{n^2}$ при больших n

Ряд
$$\sum_{n=1}^{\infty} \frac{x^2}{n^2} = x^2 \sum_{n=1}^{\infty} \frac{1}{n^2}$$
 сходится для любого конечного x .

Но равномерной сходимости нет, поскольку: $\sup_{x\in(0,+\infty)}\lvert u_{n(x)}\rvert=1$ для всех n

И ряд $\sum_{n=1}^{\infty} 1$ расходится.

Ответ:

- На множестве $D_1 = [0, 10]$ ряд сходится равномерно
- На множестве $D_2=(0,+\infty)$ ряд не сходится равномерно

КР 2. Вариант 6.

1. Вычислите сумму ряда

$$\sum_{n=1}^{\infty} \frac{4}{n^2 + 8n + 15}$$

Решение:

Разложим знаменатель на множители: $n^2 + 8n + 15 = (n+3)(n+5)$

Представим дробь в виде суммы простейших:

$$\frac{4}{(n+3)(n+5)} = \frac{A}{n+3} + \frac{B}{n+5}$$

Решая систему уравнений, находим A=2, B=-2

Таким образом, ряд можно переписать как:

$$\sum_{n=1}^{\infty} \left[\frac{2}{n+3} - \frac{2}{n+5} \right]$$

Запишем частичную сумму:

$$S_N = 2 \left[\sum_{k=4}^{N+3} \frac{1}{k} - \sum_{k=6}^{N+5} \frac{1}{k} \right] = 2 \left[\frac{1}{4} + \frac{1}{5} - \frac{1}{N+4} - \frac{1}{N+5} \right]$$

При $N o \infty$ получаем:

$$S = 2\left(\frac{1}{4} + \frac{1}{5}\right) = 2\left(\frac{9}{20}\right) = \frac{9}{10}$$

Ответ: $\frac{9}{10}$

2. Исследуйте на сходимость ряд

$$\sum_{n=1}^{\infty} \left(1 - \cos\left(\frac{1}{n}\right) \right)$$

Решение:

Используем предельный признак сравнения. Сравним с рядом $\sum \frac{1}{n^2}$, который сходится.

Вычислим предел:

$$\lim_{n\to\infty}\frac{1-\cos\left(\frac{1}{n}\right)}{\frac{1}{n^2}}=\lim_{x\to0}\frac{1-\cos x}{x^2}=\frac{1}{2}$$

Так как предел конечен и положителен, а ряд $\sum \frac{1}{n^2}$ сходится, то исходный ряд также сходится.

Ответ: Ряд сходится

3. Найдите множества абсолютной и условной сходимости ряда

$$\sum_{n=1}^{\infty} \frac{(x+2)^n}{(n+1)\cdot 6^n}$$

Решение:

Применим признак Коши:

$$\lim_{n \to \infty} \sqrt[n]{\frac{(x+2)^n}{(n+1)6^n}} = |x+2| < 1 \Rightarrow |x+2| < 6$$

Интервал сходимости: $-6 < x + 2 < 6 \Rightarrow -8 < x < 4$

Исследуем граничные точки:

1. При x=-8: ряд $\sum \frac{(-6)^n}{(n+1)6^n}=\sum \frac{(-1)^n}{n+1}$ - сходится условно 2. При x=4: ряд $\sum \frac{6^n}{(n+1)6^n}=\sum \frac{1}{n+1}$ - расходится

Ответ:

• Множество абсолютной сходимости: (-8,4)

• Множество условной сходимости: x=-8

4. Разложите функцию $f(x) = \frac{1}{6-x}$ в ряд Тейлора в окрестности точки $x_0 = 4$ и укажите область сходимости полученного ряда к f(x).

Решение:

Преобразуем функцию:

$$\frac{1}{6-x} = \frac{1}{2-(x-4)} = \frac{1}{2} \cdot \frac{1}{1-\frac{x-4}{2}}$$

Используем формулу суммы геометрического ряда:

$$\frac{1}{1-t} = \sum_{n=0}^{\infty} t^n, |t| < 1$$

Таким образом:

$$f(x) = \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{x-4}{2} \right)^n = \sum_{n=0}^{\infty} \frac{(x-4)^n}{2^{n+1}}$$

Область сходимости:

$$|\frac{x-4}{2}| < 1 \Rightarrow |x-4| < 2 \Rightarrow 2 < x < 6$$

Ответ: Ряд Тейлора: $\sum_{n=0}^{\infty} \frac{(x-4)^n}{2^{n+1}}$ Область сходимости: (2,6)

5. Найти предел f(x) данной функциональной последовательности $f_{n(x)}$ при $n \to \infty$ выяснить, будет ли эта сходимость равномерной на заданных множествах.

$$f_{n(x)}=\frac{n^2x^2+2}{n^3x^3+3},\quad E_1=(0,+\infty),\quad E_2=[2,3]$$

Решение:

Найдем поточечный предел:

$$f(x) = \lim_{n \to \infty} \frac{n^2 x^2 + 2}{n^3 x^3 + 3} = \lim_{n \to \infty} \frac{\frac{x^2}{n} + \frac{2}{n^3}}{x^3 + \frac{2}{n^3}} = 0$$

Исследуем равномерную сходимость:

1. Ha
$$E_1 = (0, +\infty)$$
:

Найдем супремум отклонения:

$$\sup_{x \in (0,\infty)} \lvert f_{n(x)} - f(x) \rvert = \sup_{x > 0} \frac{n^2 x^2 + 2}{n^3 x^3 + 3}$$

При $x = n^{-\frac{1}{2}}$:

$$f_{n(x)} = \frac{n^2 \cdot \left(\frac{1}{n}\right) + 2}{n^3 \cdot \left(\frac{1}{n}\right)^{\frac{3}{2}} + 3} \to \frac{1+2}{\infty + 3} = 0$$

Но при малых x значение может быть сколь угодно большим, поэтому супремум не стремится к 0. Сходимость неравномерная.

2. Ha
$$E_2 = [2, 3]$$
:

Оценим отклонение:

$$|f_{n(x)}| \le \frac{n^2 \cdot 9 + 2}{n^3 \cdot 8 + 3} \to 0$$

Так как оценка равномерна по $x \in [2,3]$, сходимость равномерная.

Ответ:

- Предельная функция: f(x) = 0
- На E_1 сходимость неравномерная
- На E_2 сходимость равномерная

КР 2. Вариант 5.

1. Вычислите сумму ряда

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 5n + 6}$$

Решение:

Разложим знаменатель на множители: $n^2 + 5n + 6 = (n+2)(n+3)$

Разложим дробь на простейшие:

$$\frac{1}{(n+2)(n+3)} = \frac{A}{n+2} + \frac{B}{n+3}$$

Решая систему уравнений, находим A=1, B=-1

Таким образом, ряд можно переписать как:

$$\sum_{n=1}^{\infty} \left[\frac{1}{n+2} - \frac{1}{n+3} \right]$$

Запишем частичную сумму:

$$S_N = \sum_{k=3}^{N+2} \frac{1}{k} - \sum_{k=4}^{N+3} \frac{1}{k} = \frac{1}{3} - \frac{1}{N+3}$$

При $N \to \infty$ получаем:

$$S = \frac{1}{3}$$

Ответ: $\frac{1}{3}$

2. Исследуйте на сходимость ряд

$$\sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{n^2 + 5n} \right)$$

Решение:

Используем эквивалентность $\ln(1+x) \sim x$ при $x \to 0$:

$$\ln\left(1 + \frac{1}{n^2 + 5n}\right) \sim \frac{1}{n^2 + 5n} \sim \frac{1}{n^2}$$

Ряд $\sum \frac{1}{n^2}$ сходится (обобщенный гармонический с p=2), поэтому по признаку сравнения исходный ряд также сходится.

Ответ: Ряд сходится

3. Найдите множества абсолютной и условной сходимости ряда

$$\sum_{n=1}^{\infty} \frac{(x-1)^n}{n-4^n}$$

Решение:

Применим признак Коши:

$$\lim_{n\to\infty} \sqrt[n]{|\frac{(x-1)^n}{n-4^n}|} = |x-1| \frac{1}{4} < 1 \Rightarrow |x-1| < 4$$

Интервал сходимости: $-4 < x - 1 < 4 \Rightarrow -3 < x < 5$

Исследуем граничные точки:

- 1. При x=-3: ряд $\sum \frac{(-4)^n}{n-4^n}$ расходится (общий член не стремится к 0) 2. При x=5: ряд $\sum \frac{4^n}{n-4^n}$ расходится (общий член стремится к -1)

Для абсолютной сходимости исследуем ряд из модулей:

$$\sum |\frac{(x-1)^n}{n-4^n}| = \sum |x-1|^n |n-4^n|$$

При |x-1| < 4 ряд сходится абсолютно, так как мажорируется сходящейся геометрической прогрессией.

Ответ:

- Множество абсолютной сходимости: (-3, 5)
- Множество условной сходимости: ∅ (нет условной сходимости)

4. Разложите в ряд Тейлора

$$f(x) = \frac{1}{3x+1}$$

Решение:

Представим функцию в виде:

$$\frac{1}{3x+1} = \frac{1}{1 - (-3x)}$$

Используем формулу суммы геометрического ряда:

$$\frac{1}{1-t}=\sum_{n=0}^{\infty}t^n, |t|<1$$

Таким образом:

$$f(x) = \sum_{n=0}^{\infty} (-3x)^n = \sum_{n=0}^{\infty} (-3)^n x^n$$

Область сходимости:

$$|-3x|<1 \Rightarrow |x|<\frac{1}{3} \Rightarrow -\frac{1}{3} < x < \frac{1}{3}$$

Ответ: Ряд Тейлора: $\sum_{n=0}^{\infty}{(-3)^nx^n}$ Область сходимости: $\left(-\frac{1}{3},\frac{1}{3}\right)$

КР 2. Вариант 4.

1. Вычислите сумму ряда:

$$\sum_{n=1}^{\infty} \frac{3}{n^2 + 3n + 2}$$

Решение: Разложим знаменатель: $n^2 + 3n + 2 = (n+1)(n+2)$ Разложим дробь:

$$\frac{3}{(n+1)(n+2)} = 3\left(\frac{1}{n+1} - \frac{1}{n+2}\right)$$

Частичная сумма:
$$S_N=3\left[\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\ldots+\left(\frac{1}{N+1}-\frac{1}{N+2}\right)\right]=3\left(\frac{1}{2}-\frac{1}{N+2}\right)$$

Предел при $N \to \infty$: $S = 3 * \frac{1}{2} = \frac{3}{2}$

Otbet: $\frac{3}{2}$

2. Исследуйте на сходимость ряд:

$$\sum_{n=1}^{\infty} \left(e^{\frac{1}{n^2}} - 1 \right)$$

Решение: Используем эквивалентность $e^x-1\sim x$ при $x\to 0$: $e^{\frac{1}{n^2}}-1\sim \frac{1}{n^2}$

Ряд $\sum \frac{1}{n^2}$ сходится (p-ряд с p=2), поэтому по признаку сравнения исходный ряд сходится.

Ответ: Ряд сходится

3. Найдите множества абсолютной и условной сходимости ряда:

$$\sum_{n=1}^{\infty} \frac{(x+3)^n}{n^2 \cdot 4^n}$$

Решение: Применим признак Даламбера: $\lim_{n\to\infty} |\frac{\frac{(x+3)^{n+1}}{(n+1)^24^{n+1}}}{\frac{(x+3)^n}{2\cdot n}}| = |x+3| < 1 \Rightarrow |x+3| < 4$

Интервал сходимости: $-4 < x + 3 < 4 \Rightarrow -7 < x < 1$

Граничные точки:

- 1. При x=-7: $\sum \frac{(-4)^n}{n^2 4^n} = \sum \frac{(-1)^n}{n^2}$ сходится абсолютно 2. При x=1: $\sum \frac{4^n}{n^2 4^n} = \sum \frac{1}{n^2}$ сходится абсолютно

Ответ:

- Множество абсолютной сходимости: [-7, 1]
- Множество условной сходимости: ∅

4. Разложите функцию $f(x) = \frac{1}{x-1}$ в ряд Тейлора в окрестности точки $x_0 = 3$ и укажите область сходимости полученного ряда к f(x).

Решение: Преобразуем функцию: $\frac{1}{x-1} = \frac{1}{2+(x-3)} = \frac{1}{2} * \frac{1}{1+\frac{x-3}{2}}$

Используем геометрический ряд: $\frac{1}{1+t} = \sum_0^\infty{(-t)^n}$ при |t| < 1

Получаем: $f(x)=rac{1}{2}\sum_0^\infty \left(-rac{x-3}{2}
ight)^n=\sum_0^\infty rac{(-1)^n(x-3)^n}{2^{n+1}}$

Область сходимости: $|\frac{x-3}{2}| < 1 \Rightarrow |x-3| < 2 \Rightarrow 1 < x < 5$

Ответ: Ряд: $\sum_0^\infty \frac{(-1)^n (x-3)^n}{2^{n+1}}$ Область сходимости: (1,5)

5. Найти предел f(x) данной функциональной последовательности $f_{n(x)}$ при $n \to \infty$ выяснить, будет ли эта сходимость равномерной на заданных множествах.

$$f_{n(x)} = \frac{n^2x^2+1}{n^2+x^2}, \quad E_1 = (-\infty, +\infty), \quad E_2 = [0,1]$$

Решение: Поточечный предел: $f(x)=\lim_{n \to \infty} \frac{n^2 x^2 + 1}{n^2 + x^2} = x^2$

Исследуем равномерную сходимость:

1. Ha $E_1 = \mathbb{R}$:

 $\sup |f_{n(x)}-f(x)|=\sup |\frac{1-x^4}{n^2+x^2}|$ При x=n: $\frac{1-n^4}{n^2+n^2}\to \infty \Longrightarrow$ сходимость неравномерная

2. Ha $E_2 = [0, 1]$:

 $\sup_{x\in[0,1]}|\frac{1-x^4}{n^2+x^2}|\leq\frac{1}{n^2}\to0\Longrightarrow$ сходимость равномерная

Ответ: Предел: $f(x)=x^2$ На E_1 сходимость неравномерная, на E_2 - равномерная

6. Приведите пример числового ряда, у которого остаток $R_{n(x)} \not\to 0$ при $n \to \infty$. Обоснуйте ответ.

Решение: Пример: $\sum_1^\infty 1$ (гармонический ряд) Остаток $R_n = \sum_{n+1}^\infty 1 = \infty$ не стремится к 0 при n $\to\infty$, так как ряд расходится.

Ответ: Гармонический ряд $\sum_1^{\infty} 1$

7. Является ли следующее условие равносильным определению *поточечной* сходимости функциоональной последовательности $f_n:D\to\mathbb{R}$ кк функции f на множестве D? Если нет, переформулируйте его, чтобы оно стало подходящим

$$\forall \varepsilon > 0 \ \exists n_0: \ \forall n > n_0 \ \exists x \in D \Rightarrow |f_{n(x)} - f(x)| < \varepsilon$$

Решение: Данное условие неверно. Правильное определение поточечной сходимости:

$$\forall x \in D \ \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N}: \ \forall n > n_0 \Rightarrow |f_{n(x)} - f(x)| < \varepsilon$$

Или в кванторах:

$$\forall x \in D \ \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N}: \ \forall n > n_0 \Rightarrow |f_{n(x)} - f(x)| < \varepsilon$$

Ответ: Нет, правильная формулировка требует, чтобы n_0 зависело от x и ε , а не существовало одного n_0 для всех x.

КР 2. Вариант ?.

1. Вычислите сумму ряда:

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 10n + 24}$$

Решение: Разложим знаменатель на множители: $n^2 + 10n + 24 = (n+4)(n+6)$

Разложим дробь на простейшие:

$$\frac{1}{(n+4)(n+6)} = \frac{A}{n+4} + \frac{B}{n+6}$$

Решая систему уравнений: 1=A(n+6)+B(n+4) При n=-4: $1=2A\Rightarrow A=\frac{1}{2}$ При n=-6: $1=-2B\Rightarrow B=-\frac{1}{2}$

Таким образом:

$$\sum_{n=1}^{\infty} \left[\frac{\frac{1}{2}}{n+4} - \frac{\frac{1}{2}}{n+6} \right] = \frac{1}{2} \sum_{n=1}^{\infty} \left[\frac{1}{n+4} - \frac{1}{n+6} \right]$$

Вычислим частичную сумму:

$$S_N = \frac{1}{2} \left[\left(\frac{1}{5} - \frac{1}{7} \right) + \left(\frac{1}{6} - \frac{1}{8} \right) + \ldots + \left(\frac{1}{N+4} - \frac{1}{N+6} \right) \right]$$

При $N \to \infty$:

$$S = \frac{1}{2} \left(\frac{1}{5} + \frac{1}{6} \right) = \frac{1}{2} \left(\frac{6+5}{30} \right) = \frac{11}{60}$$

Ответ: $\frac{11}{60}$

2. Исследуйте на сходимость ряд:

$$\sum_{n=1}^{\infty} \Bigl(\sqrt{n^4 + 1} - n^2 \Bigr)$$

Решение: Умножим и разделим на сопряженное:

$$\sqrt{n^4+1}-n^2=rac{1}{\sqrt{n^4+1}+n^2}\simrac{1}{2n^2}$$
 при $n o\infty$

Ряд $\sum \frac{1}{2n^2}$ сходится (p-ряд с p=2), поэтому по признаку сравнения исходный ряд сходится.

Ответ: Ряд сходится

3. Найдите множество абсолютной и условной сходимости ряда:

$$\sum_{n=1}^{\infty} \frac{(x+4)^n}{(2n-1)\cdot 3^n}$$

Решение: Применим признак Даламбера:

$$\lim_{n\to\infty} |\frac{\frac{(x+4)^{n+1}}{(2n+1)3^{n+1}}}{\frac{(x+4)^n}{(2n-1)3^n}}| = |x+4| \frac{1}{3} < 1 \Rightarrow |x+4| < 3$$

Интервал сходимости: $-3 < x + 4 < 3 \Rightarrow -7 < x < -1$

Исследуем граничные точки:

1. При x=-7: $\sum \frac{(-3)^n}{(2n-1)3^n}=\sum \frac{(-1)^n}{2n-1}$ - сходится условно (по признаку Лейбница) 2. При x=-1: $\sum \frac{3^n}{(2n-1)3^n}=\sum \frac{1}{2n-1}$ - расходится (гармонический ряд)

Для абсолютной сходимости: При -7 < x < -1 ряд сходится абсолютно, так как мажорируется сходящейся геометрической прогрессией.

Ответ:

- Множество абсолютной сходимости: (-7, -1)
- Множество условной сходимости: $\{-7\}$
- 4. Разложите функцию $f(x)=rac{1}{7-x}$ в ряд Тейлора в окрестности точки $x_0=5$ и укажите область сходимости полученного ряда к f(x).

Решение: Преобразуем функцию:

$$\frac{1}{7-x} = \frac{1}{2-(x-5)} = \frac{1}{2} \cdot \frac{1}{1-\frac{x-5}{2}}$$

Используем формулу суммы геометрического ряда:

$$\frac{1}{1-t} = \sum_{n=0}^{\infty} t^n, |t| < 1$$

Таким образом:

$$f(x) = \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{x-5}{2} \right)^n = \sum_{n=0}^{\infty} \frac{(x-5)^n}{2^{n+1}}$$

Область сходимости:

$$|\frac{x-5}{2}| < 1 \Rightarrow |x-5| < 2 \Rightarrow 3 < x < 7$$

Ответ: Ряд Тейлора: $\sum_{n=0}^{\infty} \frac{(x-5)^n}{2^{n+1}}$ Область сходимости: (3,7)

КР 2. Вариант ?.

1. Вычислите сумму ряда:

$$\sum_{n=1}^{\infty} \frac{4}{n^2 + 8n + 15}$$

Решение: Разложим знаменатель на множители: $n^2 + 8n + 15 = (n+3)(n+5)$

Разложим дробь на простейшие:

$$\frac{4}{(n+3)(n+5)} = \frac{A}{n+3} + \frac{B}{n+5}$$

Решая систему уравнений: 4 = A(n+5) + B(n+3) При n = -3: $4 = 2A \Rightarrow A = 2$ При n = -5: $4 = -2B \Rightarrow B = -2$

Таким образом:

$$\sum_{n=1}^{\infty} \left[\frac{2}{n+3} - \frac{2}{n+5} \right] = 2 \sum_{n=1}^{\infty} \left[\frac{1}{n+3} - \frac{1}{n+5} \right]$$

Вычислим частичную сумму:

$$S_N = 2 \left[\left(\frac{1}{4} - \frac{1}{6} \right) + \left(\frac{1}{5} - \frac{1}{7} \right) + \ldots + \left(\frac{1}{N+3} - \frac{1}{N+5} \right) \right]$$

При $N \to \infty$:

$$S = 2\left(\frac{1}{4} + \frac{1}{5}\right) = 2\left(\frac{9}{20}\right) = \frac{9}{10}$$

Ответ: $\frac{9}{10}$

2. Исследуйте на сходимость ряд:

$$\sum_{n=1}^{\infty} \left(1 - \cos\left(\frac{1}{n}\right) \right)$$

Решение: Используем асимптотическую эквивалентность: $1-\cos\left(\frac{1}{n}\right)\sim\frac{1}{2n^2}$ при $n\to\infty$

Ряд $\sum \frac{1}{2n^2}$ сходится (p-ряд с p=2 > 1), поэтому по признаку сравнения исходный ряд сходится.

Ответ: Ряд сходится

3. Найдите множества абсолютной и условной сходимости ряда:

$$\sum_{n=1}^{\infty} \frac{(x+2)^n}{(n+1)\cdot 6^n}$$

Решение: Применим признак Даламбера:

$$\lim_{n\to\infty} |\frac{\frac{(x+2)^{n+1}}{(n+2)6^{n+1}}}{\frac{(x+2)^n}{(n+1)6^n}}| = |x+2\frac{|}{6} < 1 \Rightarrow |x+2| < 6$$

Интервал сходимости: $-6 < x + 2 < 6 \Rightarrow -8 < x < 4$

Исследуем граничные точки:

1. При x=-8: $\sum \frac{(-6)^n}{(n+1)6^n}=\sum \frac{(-1)^n}{n+1}$ - сходится условно (по признаку Лейбница) 2. При x=4: $\sum \frac{6^n}{(n+1)6^n}=\sum \frac{1}{n+1}$ - расходится (гармонический ряд)

Для абсолютной сходимости: При -8 < x < 4 ряд сходится абсолютно, так как мажорируется сходящейся геометрической прогрессией.

Ответ:

- Множество абсолютной сходимости: (-8,4)
- Множество условной сходимости: $\{-8\}$
- 4. Разложите функцию $f(x) = \frac{1}{6-x}$ в ряд Тейлора в окрестности точки $x_0 = 4$ и укажите область сходимости полученного ряда к f(x).

Решение: Преобразуем функцию:

$$\frac{1}{6-x} = \frac{1}{2-(x-4)} = \frac{1}{2} \cdot \frac{1}{1-\frac{x-4}{2}}$$

Используем формулу суммы геометрического ряда:

$$\frac{1}{1-t} = \sum_{n=0}^{\infty} t^n, |t| < 1$$

Таким образом:

$$f(x) = \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{x-4}{2} \right)^n = \sum_{n=0}^{\infty} \frac{(x-4)^n}{2^{n+1}}$$

Область сходимости:

$$|\frac{x-4}{2}| < 1 \Rightarrow |x-4| < 2 \Rightarrow 2 < x < 6$$

Ответ: Ряд Тейлора: $\sum_{n=0}^{\infty} \frac{(x-4)^n}{2^{n+1}}$ Область сходимости: (2,6)

КР 2. Вариант 9.

1. Вычислите сумму ряда:

$$\sum_{n=1}^{\infty} \frac{2}{n^2 + 11n + 28}$$

Решение: Разложим знаменатель на множители: $n^2 + 11n + 28 = (n+4)(n+7)$

Разложим дробь на простейшие:

$$\frac{2}{(n+4)(n+7)} = \frac{A}{n+4} + \frac{B}{n+7}$$

Решая систему уравнений: 2=A(n+7)+B(n+4) При n=-4: $2=3A\Rightarrow A=\frac{2}{3}$ При n=-7: $2=-3B\Rightarrow B=-\frac{2}{3}$

Таким образом:

$$\sum_{n=1}^{\infty} \left[\frac{\frac{2}{3}}{n+4} - \frac{\frac{2}{3}}{n+7} \right] = \frac{2}{3} \sum_{n=1}^{\infty} \left[\frac{1}{n+4} - \frac{1}{n+7} \right]$$

Вычислим частичную сумму:

$$S_N = \frac{2}{3} \bigg[\left(\frac{1}{5} - \frac{1}{8} \right) + \left(\frac{1}{6} - \frac{1}{9} \right) + \ldots + \left(\frac{1}{N+4} - \frac{1}{N+7} \right) \bigg]$$

При $N \to \infty$:

$$S = \frac{2}{3} \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} \right) = \frac{2}{3} \left(\frac{42 + 35 + 30}{210} \right) = \frac{2}{3} \left(\frac{107}{210} \right) = \frac{107}{315}$$

Ответ: $\frac{107}{315}$

2. Исследуйте на сходимость ряд:

$$\sum_{n=1}^{\infty} \tan\left(\frac{1}{n^2 \sqrt{n}}\right)$$

Решение: Используем асимптотическую эквивалентность: $\tan(x) \sim x$ при $x \to 0$

Таким образом:

$$\tan\left(\frac{1}{n^2\sqrt{n}}\right) \sim \frac{1}{n^2\sqrt{n}} = \frac{1}{n^{\frac{5}{2}}}$$

Ряд $\sum \frac{1}{n^{\frac{5}{2}}}$ сходится (p-ряд с p=5/2 > 1), поэтому по признаку сравнения исходный ряд сходится.

Ответ: Ряд сходится

3. Найдите множества абсолютной и условной сходимости ряда:

$$\sum_{n=1}^{\infty} \frac{(x-5)^n}{n \cdot 3^n}$$

Решение: Применим признак Даламбера:

$$\lim_{n \to \infty} |\frac{\frac{(x-5)^{n+1}}{(n+1)3^{n+1}}}{\frac{(x-5)^n}{n^{\frac{2n}{n}}}}| = |x-5| \frac{1}{3} < 1 \Rightarrow |x-5| < 3$$

Интервал сходимости: $-3 < x - 5 < 3 \Rightarrow 2 < x < 8$

Исследуем граничные точки:

1. При x=2: $\sum \frac{(-3)^n}{n3^n}=\sum \frac{(-1)^n}{n}$ - сходится условно (по признаку Лейбница) 2. При x=8: $\sum \frac{3^n}{n3^n}=\sum \frac{1}{n}$ - расходится (гармонический ряд)

Для абсолютной сходимости: При 2 < x < 8 ряд сходится абсолютно, так как мажорируется сходящейся геометрической прогрессией.

Ответ:

- Множество абсолютной сходимости: (2, 8)
- Множество условной сходимости: {2}
- 4. Разложите функцию $f(x) = \frac{1}{2x-1}$ в ряд Тейлора в окрестности точки $x_0 = 2$ и укажите область сходимости полученного ряда к f(x).

Решение: Преобразуем функцию:

$$\frac{1}{2x-1} = \frac{1}{3+2(x-2)} = \frac{1}{3} \cdot \frac{1}{1+\frac{2(x-2)}{3}}$$

Используем формулу суммы геометрического ряда:

$$\frac{1}{1+t} = \sum_{n=0}^{\infty} (-t)^n, |t| < 1$$

Таким образом:

$$f(x) = \frac{1}{3} \sum_{n=0}^{\infty} \left(-\frac{2(x-2)}{3} \right)^n = \sum_{n=0}^{\infty} \frac{(-1)^n 2^n (x-2)^n}{3^{n+1}}$$

Область сходимости:

$$|\frac{2(x-2)}{3}| < 1 \Rightarrow |x-2| < \frac{3}{2} \Rightarrow \frac{1}{2} < x < \frac{7}{2}$$

Ответ: Ряд Тейлора: $\sum_{n=0}^{\infty} \frac{(-1)^n 2^n (x-2)^n}{3^{n+1}}$ Область сходимости: $\left(\frac{1}{2}, \frac{7}{2}\right)$

5. Найти предел f(x) данной функциональной последовательности $f_{n(x)}$ при $n o \infty$ и выяснить, будет ли эта сходимость равномерной на заданных множествах.

$$f_{n(x)} = \frac{n^2 x^2 + 2}{n^3 x^3 + 3}, \quad E_1 = (0, +\infty), \quad E_2 = [2, 3].$$

Решение: Поточечный предел:

$$f(x) = \lim_{n \to \infty} \frac{n^2 x^2 + 2}{n^3 x^3 + 3} = 0$$

Исследуем равномерную сходимость:

1. Ha
$$E_1 = (0, +\infty)$$
:

 $\sup |f_{n(x)}| = \sup \tfrac{n^2 x^2 + 2}{n^3 x^3 + 3} \text{ При } x = \tfrac{1}{n} : \tfrac{n^2 \left(\frac{1}{n}\right)^2 + 2}{n^3 \left(\frac{1}{n}\right)^3 + 3} = \tfrac{1+2}{1+3} = \tfrac{3}{4} \not\rightarrow 0 \text{ Сходимость неравномерная}$ 2. На $E_2 = [2,3]$:

 $\sup \lvert f_{n(x)} \rvert \leq \frac{n^29+2}{n^38+3} \rightarrow 0$ Сходимость равномерная

Ответ: Предел: f(x)=0 На E_1 сходимость неравномерная, на E_2 - равномерная

6. Приведите пример сходящегося числового ряда, для которого радикальный признак Коши не дает утвердительного ответа (о его поведении в смысле сходимости). Обоснуйте ответ.

Решение: Пример: $\sum_{n=1}^{\infty} \frac{1+(-1)^n}{2^n}$ При нечетных n: $\sqrt[n]{a_n} = 0$ При четных n: $\sqrt[n]{a_n} = \frac{1}{2}$ Предел $\lim \sqrt[n]{a_n}$ не существует, но ряд сходится по признаку сравнения.

Ответ: Ряд $\sum \frac{1+(-1)^n}{2^n}$ сходится, но радикальный признак Коши неприменим.

7. Является ли следующее условие равносильным определению *поточечной* сходимости функционального ряда с частичными суммами $S_{n(x)}$ к сумме S(x) на множестве D? Если нет, переформулируйте его, чтобы оно стало подходящим.

$$\forall \varepsilon > 0 \ \exists n_0: \ \forall n > n_0 \ \exists x \in D \Rightarrow |S_{n(x)} - S(x)| < \varepsilon$$

Решение: Данное условие неверно. Правильное определение поточечной сходимости:

$$\forall x \in D \ \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N}: \ \forall n > n_0 \Rightarrow |S_{n(x)} - S(x)| < \varepsilon$$

Или в кванторах:

$$\forall x \in D \ \forall \varepsilon > 0 \ \exists n_0 = n_0(x,\varepsilon): \ \forall n > n_0 \Rightarrow |S_{n(x)} - S(x)| < \varepsilon$$

Ответ: Нет, правильная формулировка требует, чтобы n_0 зависело от x и ε , а не существовало одного n_0 для всех x.

КР 2. Вариант 8.

1. Вычислите сумму ряда:

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 10n + 24}$$

Решение: Разложим знаменатель: $n^2 + 10n + 24 = (n+4)(n+6)$ Разложим на простейшие дроби: $\frac{1}{(n+4)(n+6)} = \frac{1}{2} \left(\frac{1}{n+4} - \frac{1}{n+6} \right)$

Частичная сумма:
$$S_N=\frac{1}{2}\left[\left(\frac{1}{5}-\frac{1}{7}\right)+\left(\frac{1}{6}-\frac{1}{8}\right)+...+\left(\frac{1}{N+4}-\frac{1}{N+6}\right)\right]$$

Предел при
$$N \to \infty$$
: $S = \frac{1}{2} \left(\frac{1}{5} + \frac{1}{6} \right) = \frac{11}{60}$

Ответ: $\frac{11}{60}$

2. Исследуйте на сходимость ряд:

$$\sum_{n=1}^{\infty} \left(\sqrt{n^4 + 1} - n^2 \right)$$

Решение: Умножим и разделим на сопряженное: $\sqrt{n^4+1}-n^2=\frac{1}{\sqrt{n^4+1}+n^2}\sim \frac{1}{2n^2}$

Ряд $\sum \frac{1}{2n^2}$ сходится (p=2>1), поэтому исходный ряд сходится.

Ответ: Ряд сходится

3. Найдите множества абсолютной и условной сходимости ряда:

$$\sum_{n=1}^{\infty} \frac{(x+4)^n}{(2n-1) \cdot 3^n}$$

Решение: Применим признак Даламбера: $\lim_{n\to\infty} |\frac{\frac{(x+4)^{n+1}}{(2n+1)3^{n+1}}|}{\frac{(x+4)^n}{(2n+1)3^n}}| = |x+4\frac{1}{3} < 1 \Rightarrow x \in (-7,-1)$

1. x=-7:
$$\sum \frac{(-3)^n}{(2n-1)3^n} = \sum \frac{(-1)^n}{2n-1}$$
 - сходится условно 2. x=-1: $\sum \frac{3^n}{(2n-1)3^n} = \sum \frac{1}{2n-1}$ - расходится

2. x=-1:
$$\sum \frac{3^{n}}{(2n-1)3^n} = \sum \frac{1}{2n-1}$$
 - расходится

Ответ:

- Абсолютная сходимость: (-7, -1)
- Условная сходимость: $\{-7\}$

4. Разложите функцию $f(x) = \frac{1}{7-x}$ в ряд Тейлора в окрестности точки $x_0 = 5$ и укажите область сходимости полученного ряда к f(x). Решение: Преобразуем: $\frac{1}{7-x}=\frac{1}{2-(x-5)}=\frac{1}{2}\sum_{n=0}^{\infty}\left(\frac{x-5}{2}\right)^n$

Решение: Преобразуем:
$$\frac{1}{7-x} = \frac{1}{2-(x-5)} = \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{x-5}{2}\right)^n$$

Область сходимости:
$$|\frac{x-5}{2}| < 1 \Rightarrow x \in (3,7)$$

Ответ: Ряд:
$$\sum_{n=0}^{\infty} \frac{(x-5)^n}{2^{n+1}}$$
 Область сходимости: $(3,7)$

5. Найти предел f(x) данной функциональной последовательности $f_{n(x)}$ при $n o \infty$ и выяснить, будет ли эта сходимость равномерной на заданных множествах.

$$f_{n(x)} = \sin \frac{nx}{n^2x^2 + 1}, \quad E_1 = [1, 3], \quad E_2 = \mathbb{R}.$$

Решение: Предел: $f(x)=\lim_{n\to\infty}\sin\frac{nx}{n^2x^2+1}=\sin 0=0$

Равномерная сходимость:

1. Ha
$$E_1 = [1, 3]$$
:

$$\sup |\sin \frac{nx}{n^2x^2+1}| \leq \sup \frac{nx}{n^2x^2+1} \leq \frac{3n}{n^2+1} \to 0$$
 Сходимость равномерная

2. Ha
$$E_2 = \mathbb{R}$$
:

При
$$x=rac{1}{n}$$
: $f_{n(rac{1}{n})}=\sinrac{1}{1+rac{1}{n^2}} o\sin1
eq0$ Сходимость неравномерная

Ответ: Предел: f(x)=0 На E_1 - равномерная, на E_2 - неравномерная

6. Приведите пример сходящегося числового ряда, для которого признак Даламбера не дает утвердительного ответа (о его поведении в смысле сходимости). Обоснуйте ответ.

Решение: Пример: $\sum_{n=1}^{\infty} \frac{2+(-1)^n}{2^n}$ Отношение $\frac{a_{n+1}}{a_n}$ колеблется между 3/2 и 1/6, предел не существует. Но ряд сходится по признаку сравнения с $\sum \frac{3}{2^n}$.

Ответ: $\sum rac{2+(-1)^n}{2^n}$ - сходится, но признак Даламбера неприменим

7. Является ли следующее условие равносильным определению *поточечной* сходимости функционального ряда с частичными суммами $S_{n(x)}$ к сумме S(x) на множестве D? Если нет, переформулируйте его, чтобы оно стало подходящим.

$$\forall \varepsilon > 0 \ \exists n_0: \ \forall n > n_0 \ \forall x \in D \Rightarrow |S_{n(x)} - S(x)| < \varepsilon$$

Решение: Данное условие описывает равномерную сходимость. Для поточечной сходимости правильная формулировка:

$$\forall x \in D \ \forall \varepsilon > 0 \ \exists n_0 = n_0(x,\varepsilon): \ \forall n > n_0 \Rightarrow |S_{n(x)} - S(x)| < \varepsilon$$

Ответ: Нет, это условие равномерной сходимости. Для поточечной сходимости n_0 должно зависеть от x.

8. Пусть дан степенной ряд с центром в $x_0=4$ и радиусом сходимости R=3. Из данных множеств выберите наибольшее, на котором ряд сходится точно *равномерно*. Обоснуйте ваш выбор.

$$\emptyset\ \{4\}\ [3,5]\ (1,7)\ [1,7]$$

Решение: Степенной ряд равномерно сходится на любом компакте внутри интервала сходимости (1,7). Наибольшее компактное подмножество - [1,7].

Ответ: [1,7] - наибольшее компактное множество в интервале сходимости

КР 2. Вариант 12.

1. Вычислите сумму ряда:

$$\sum_{n=1}^{\infty} \frac{3}{n^2 + 14n + 48}$$

Решение: Разложим знаменатель: $n^2 + 14n + 48 = (n+6)(n+8)$ Разложим на простейшие дроби: $\frac{3}{(n+6)(n+8)} = \frac{3}{2} \left(\frac{1}{n+6} - \frac{1}{n+8} \right)$

Частичная сумма:
$$S_N=\frac{3}{2}\left[\left(\frac{1}{7}-\frac{1}{9}\right)+\left(\frac{1}{8}-\frac{1}{10}\right)+...+\left(\frac{1}{N+6}-\frac{1}{N+8}\right)\right]$$

Предел при
$$N o \infty$$
: $S = \frac{3}{2} \left(\frac{1}{7} + \frac{1}{8} \right) = \frac{3}{2} \left(\frac{15}{56} \right) = \frac{45}{112}$

Ответ: $\frac{45}{112}$

2. Исследуйте на сходимость ряд:

$$\sum_{n=1}^{\infty} \ln \left(\cos \left(\frac{1}{n} \right) \right)$$

Решение: Используем асимптотические разложения: $\cos\left(\frac{1}{n}\right)\approx 1-\frac{1}{2n^2}\ln\left(1-\frac{1}{2n^2}\right)\approx -\frac{1}{2n^2}$ Ряд $\sum -\frac{1}{2n^2}$ сходится абсолютно (p=2>1), поэтому исходный ряд сходится.

Ответ: Ряд сходится

3. Найдите множества абсолютной и условной сходимости ряда:

$$\sum_{n=1}^{\infty} \frac{(x+6)^n}{(n+2) \cdot 5^n}$$

Решение: Применим признак Даламбера: $\lim_{n \to \infty} |\frac{\frac{(x+6)^{n+1}}{(n+3)5^{n+1}}|}{\frac{(x+6)^n}{(n+2)5^n}}| = |x+6\frac{1}{5} < 1 \Rightarrow x \in (-11,-1)$

Граничные точки:
1. х=-11:
$$\sum \frac{(-5)^n}{(n+2)5^n} = \sum \frac{(-1)^n}{n+2}$$
 - сходится условно
2. х=-1: $\sum \frac{5^n}{(n+2)5^n} = \sum \frac{1}{n+2}$ - расходится

2. x=-1:
$$\sum \frac{5^n}{(n+2)5^n} = \sum \frac{1}{n+2}$$
 - расходится

Ответ:

- Абсолютная сходимость: (-11, -1)
- Условная сходимость: {-11}

4. Разложите функцию $f(x) = \frac{1}{x-4}$ в ряд Тейлора в окрестности точки $x_0 = 6$ и укажите область сходимости полученного ряда к f(x). Решение: Преобразуем: $\frac{1}{x-4}=\frac{1}{2+(x-6)}=\frac{1}{2}\sum_{n=0}^{\infty}\left(-\frac{x-6}{2}\right)^n$

Решение: Преобразуем:
$$\frac{1}{x-4} = \frac{1}{2+(x-6)} = \frac{1}{2} \sum_{n=0}^{\infty} \left(-\frac{x-6}{2}\right)^n$$

Область сходимости:
$$|\frac{x-6}{2}| < 1 \Rightarrow x \in (4,8)$$

Ответ: Ряд:
$$\sum_{n=0}^{\infty} \frac{(-1)^n (x-6)^n}{2^{n+1}}$$
 Область сходимости: $(4,8)$

5. Исследовать функциональный ряд на равномерную сходимость на данных множествах.

$$\sum_{n=1}^{\infty} \frac{2nx^2}{n^2 + x^2}, \quad D_1 = [0, +\infty), \quad D_2 = [0, 5].$$

Решение: Поточечный предел: $f(x) = \lim_{n \to \infty} \frac{2nx^2}{n^2 + x^2} = 0$

1. Ha $D_1 = [0, \infty)$:

При x=n: $\frac{2n^3}{n^2+n^2}=n\not\to 0$ Сходимость неравномерная

2. Ha $D_2 = [0, 5]$:

 $\sup \lvert \frac{2nx^2}{n^2+x^2} \rvert \leq \frac{50n}{n^2} = \frac{50}{n} \to 0$ Сходимость равномерная

Ответ: На D_1 - неравномерная, на D_2 - равномерная

6. Приведите пример сходящегося числового ряда, сходимость которого легко показать при помощи интегрального признака Коши. Обоснуйте ответ.

Решение: Пример: $\sum_{n=1}^{\infty} \frac{1}{n^2}$ Функция $f(x) = \frac{1}{x^2}$ непрерывна, положительна и убывает на $[1,\infty)$. Интеграл $\int_{1}^{\infty} \frac{1}{x^2} dx = 1$ сходится, значит ряд сходится.

Ответ: $\sum \frac{1}{n^2}$ - сходимость доказывается интегральным признаком

7. Является ли следующее условие равносильным определению равномерной сходимости функциональной последовательности $f_n:D\to\mathbb{R}$ к функции f на множестве D? Если нет, переформулируйте его, чтобы оно стало подходящим.

$$\forall \varepsilon > 0 \ \exists n_0: \ \forall n > n_0 \ \exists x \in D \Rightarrow |f_{n(x)} - f(x)| < \varepsilon$$

Решение: Нет, правильное определение:

$$\forall \varepsilon > 0 \ \exists n_0: \ \forall n > n_0 \ \forall x \in D \Rightarrow |f_{n(x)} - f(x)| < \varepsilon$$

Квантор существования по x должен быть заменен на квантор всеобщности.

Ответ: Нет, правильная формулировка требует $\forall x \in D$

8. Пусть дан степенной ряд с центром в $x_0=-5$ и радиусом сходимости R=2. И пусть при $x=x_0-R$ ряд сходится. Из данных множеств выберите наибольшее, на котором ряд сходится точно *равномерно*. Обоснуйте ваш выбор.

$$\emptyset$$
 $\{-5\}$ $[-4,4]$ $[-7,-4]$ $(-7,-3)$ $[-7,-3]$

Решение: Интервал сходимости: (-7, -3) При x = -7 ряд сходится по условию. Наибольшее замкнутое подмножество - [-7, -3], где ряд сходится равномерно.

Ответ: [-7, -3] - наибольшее компактное множество, содержащее точку сходимости

КР 2. Вариант 11.

1. Вычислите сумму ряда:

$$\sum_{n=1}^{\infty} \frac{2}{n^2 + 13n + 42}$$

Решение: Разложим знаменатель: $n^2 + 13n + 42 = (n+6)(n+7)$ Разложим на простейшие дроби: $\frac{2}{(n+6)(n+7)}=2\left(\frac{1}{n+6}-\frac{1}{n+7}\right)$

Частичная сумма:
$$S_N=2\left[\left(\frac{1}{7}-\frac{1}{8}\right)+\left(\frac{1}{8}-\frac{1}{9}\right)+...+\left(\frac{1}{N+6}-\frac{1}{N+7}\right)\right]$$

Предел при $N \to \infty$: $S = 2\left(\frac{1}{7}\right) = \frac{2}{7}$

Otbet: $\frac{2}{7}$

2. Исследуйте на сходимость ряд:

$$\sum_{n=1}^{\infty} \arcsin \left(\frac{1}{n^2 + 3n} \right)$$

Решение: Используем асимптотическую эквивалентность: $\arcsin(x) \sim x$ при $x \to 0$

Таким образом: $\arcsin\left(\frac{1}{n^2+3n}\right)\sim\frac{1}{n^2+3n}\sim\frac{1}{n^2}$

Ряд $\sum \frac{1}{n^2}$ сходится (p=2>1), поэтому исходный ряд сходится.

Ответ: Ряд сходится

3. Найдите множества абсолютной и условной сходимости ряда:

$$\sum_{n=1}^{\infty} \frac{(x-6)^n}{n \cdot 4^n}$$

Решение: Применим признак Даламбера: $\lim_{n \to \infty} |\frac{\frac{(x-6)^{n+1}}{(n+1)4^{n+1}}|}{\frac{(x-6)^n}{n+1}}| = |x-6\frac{1}{4} < 1 \Rightarrow x \in (2,10)$

2.
$$x=10$$
: $\sum_{n=1}^{\infty} \frac{4^n}{n4^n} = \sum_{n=1}^{\infty} \frac{1}{n}$ - расходится

Ответ:

- Абсолютная сходимость: (2, 10)
- Условная сходимость: {2}

4. Разложите функцию $f(x) = \frac{1}{5-2x}$ в ряд Тейлора в окрестности точки $x_0 = 2$ и укажите область сходимости полученного ряда к f(x).

Решение: Преобразуем: $\frac{1}{5-2x} = \frac{1}{1-2(x-2)} = \sum_{n=0}^{\infty} 2^n (x-2)^n$

Область сходимости: $|2(x-2)| < 1 \Rightarrow x \in (1.5, 2.5)$

Ответ: Ряд: $\sum_{n=0}^{\infty} 2^n (x-2)^n$ Область сходимости: (1.5, 2.5)

5. Исследовать функциональный ряд на равномерную сходимость на данных множествах.

$$\sum_{n=1}^{\infty} \frac{n+x^3}{n^3+x^3}, \quad D_1 = [2,9], \quad D_2 = (0,+\infty).$$

Решение: Поточечный предел: $f(x) = \lim_{n \to \infty} \frac{n+x^3}{n^3+x^3} = 0$

1. Ha $D_1 = [2, 9]$:

 $\sup \lvert \frac{n+x^3}{n^3+x^3} \rvert \leq \frac{n+729}{n^3+8} \to 0$ Сходимость равномерная

2. Ha $D_2 = (0, \infty)$:

При x=n: $\frac{n+n^3}{n^3+n^3}=\frac{n^3+n}{2n^3}\to \frac{1}{2}\neq 0$ Сходимость неравномерная

Ответ: На D_1 - равномерная, на D_2 - неравномерная

6. Приведите пример расходящегося числового ряда, для которого признак Даламбера не дает утвердительного ответа (о его поведении в смысле сходимости). Обоснуйте ответ.

Решение: Пример: $\sum_{n=1}^{\infty} \frac{1}{n}$ (гармонический ряд) Отношение $\frac{a_{n+1}}{a_n} = \frac{n}{n+1} \to 1$, признак Даламбера не дает ответа, но ряд расходится.

Ответ: Гармонический ряд $\sum \frac{1}{n}$ расходится, но признак Даламбера неприменим

7. Является ли следующее условие равносильным определению *равномерной* сходимости функциональной последовательности $f_n:D\to\mathbb{R}$ к функции f на множестве D? Если нет, переформулируйте его, чтобы оно стало подходящим.

$$\exists \varepsilon > 0: \forall n_0 \ \exists x \in D \ \exists n > n_0: |f_{n(x)} - f(x)| < \varepsilon$$

Решение: Нет, это отрицание равномерной сходимости. Правильное определение:

$$\forall \varepsilon > 0 \ \exists n_0: \ \forall n > n_0 \ \forall x \in D: |f_{n(x)} - f(x)| < \varepsilon$$

Ответ: Нет, это условие отрицания равномерной сходимости

8. Пусть дан степенной ряд с центром в $x_0=-3$ и радиусом сходимости R=3. И пусть при $x=x_0-R$ ряд сходится. Из данных множеств выберите наибольшее, на котором ряд сходится точно равномерно. Обоснуйте ваш выбор.

$$\emptyset\ \{-3\}\ [-4,-2]\ [-6,-2]\ (-6,0)\ [-6,0]$$

Решение: Интервал сходимости: (-6,0) При x=-6 ряд сходится по условию. Наибольшее замкнутое подмножество - [-6,0], где ряд сходится равномерно.

Ответ: [-6,0] - наибольшее компактное множество, содержащее точку сходимости

КР 2. Вариант 10.

1. Вычислите сумму ряда:

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 12n + 35}$$

Решение: Разложим знаменатель: $n^2 + 12n + 35 = (n+5)(n+7)$ Разложим на простейшие дроби: $\frac{1}{(n+5)(n+7)} = \frac{1}{2} \left(\frac{1}{n+5} - \frac{1}{n+7} \right)$

Частичная сумма:
$$S_N=\frac{1}{2}\left[\left(\frac{1}{6}-\frac{1}{8}\right)+\left(\frac{1}{7}-\frac{1}{9}\right)+\ldots+\left(\frac{1}{N+5}-\frac{1}{N+7}\right)\right]$$

Предел при
$$N o \infty$$
: $S = \frac{1}{2} \left(\frac{1}{6} + \frac{1}{7} \right) = \frac{13}{168}$

Ответ: $\frac{13}{169}$

2. Исследуйте на сходимость ряд:

$$\sum_{n=1}^{\infty} \left(e^{\frac{1}{n^3}} - 1 \right)$$

Решение: Используем асимптотическую эквивалентность: $e^x-1\sim x$ при $x\to 0$

Таким образом: $e^{\frac{1}{n^3}} - 1 \sim \frac{1}{n^3}$

Ряд $\sum \frac{1}{n^3}$ сходится (p=3>1), поэтому исходный ряд сходится.

Ответ: Ряд сходится

3. Найдите множества абсолютной и условной сходимости ряда:

$$\sum_{n=1}^{\infty} \frac{(x+5)^n}{n^2 \cdot 2^n}$$

Решение: Применим признак Даламбера: $\lim_{n\to\infty} |\frac{\frac{(x+5)^{n+1}}{(n+1)^2 2^{n+1}}|}{\frac{(x+5)^n}{2n}}| = |x+5\frac{1}{2} < 1 \Rightarrow x \in (-7,-3)$

Граничные точки:

1.
$$x=-7$$
: $\sum \frac{(-2)^n}{n^2 2^n} = \sum \frac{(-1)^n}{n^2}$ - сходится абсолютно 2. $x=-3$: $\sum \frac{2^n}{n^2 2^n} = \sum \frac{1}{n^2}$ - сходится абсолютно

2. x=-3:
$$\sum_{n=2n}^{\infty} \frac{n^2}{n^2 2^n} = \sum_{n=2}^{\infty} \frac{1}{n^2}$$
 - сходится абсолютно

Ответ:

- Абсолютная сходимость: [-7, -3]
- Условная сходимость: Ø

4. Разложите функцию $f(x) = \frac{1}{x+4}$ в ряд Тейлора в окрестности точки $x_0 = -2$ и укажите область сходимости полученного ряда к f(x).

Решение: Преобразуем:
$$\frac{1}{x+4} = \frac{1}{2+(x+2)} = \frac{1}{2} \sum_{n=0}^{\infty} \left(-\frac{x+2}{2}\right)^n$$

Область сходимости:
$$|\frac{x+2}{2}|<1 \Rightarrow x \in (-4,0)$$

Ответ: Ряд:
$$\sum_{n=0}^{\infty} \frac{(-1)^n (x+2)^n}{2^{n+1}}$$
 Область сходимости: $(-4,0)$

5. Исследовать функциональный ряд на равномерную сходимость на данных множествах.

$$\sum_{n=1}^{\infty} \frac{nx}{n^3 x^3 + 1}, \quad D_1 = (0, +\infty), \quad D_2 = [1, 10].$$

Решение: Поточечный предел: $f(x) = \lim_{n \to \infty} \frac{nx}{n^3 x^3 + 1} = 0$

1. Ha $D_1 = (0, \infty)$:

При $x=rac{1}{n}:rac{n\cdotrac{1}{n}}{n^3\cdotrac{1}{n^3}+1}=rac{1}{rac{1}{n^3}+1} o 1
eq 0$ Сходимость неравномерная

2. Ha $D_2 = [1, 10]$:

 $\sup |rac{nx}{n^3x^3+1}| \leq rac{10n}{n^3+1} o 0$ Сходимость равномерная

Ответ: На D_1 - неравномерная, на D_2 - равномерная

6. Приведите пример числового ряда, для которого критерий Коши не выполняется. Обоснуйте ответ.

Решение: Пример: гармонический ряд $\sum_{n=1}^{\infty} \frac{1}{n}$ Для любого N при p=N: $|\sum_{k=N+1}^{2N} \frac{1}{k}| \geq N \cdot \frac{1}{2N} = \frac{1}{2} \geq \varepsilon = \frac{1}{4}$ Критерий Коши не выполняется, ряд расходится.

Ответ: Гармонический ряд $\sum \frac{1}{n}$ не удовлетворяет критерию Коши

7. Является ли следующее условие равносильным определению равномерной сходимости функциональной последовательности $f_n:D\to\mathbb{R}$ к функции f на множестве D? Если нет, переформулируйте его, чтобы оно стало подходящим.

$$\forall \varepsilon > 0 \ \exists x \in D \ \exists n_0: \ \forall n > n_0 \Rightarrow |f_{n(x)} - f(x)| < \varepsilon$$

Решение: Нет, правильное определение:

$$\forall \varepsilon > 0 \ \exists n_0: \ \forall x \in D \ \forall n > n_0 \Rightarrow |f_{n(x)} - f(x)| < \varepsilon$$

Квантор существования по x должен быть заменен на квантор всеобщности.

Ответ: Нет, правильная формулировка требует $\forall x \in D$ после $\exists n_0$

8. Пусть дан ряд с центром в $x_0=-3$ и радиусом сходимости R=3. Из данных множеств выберите наибольшее, на котором ряд сходится точно *равномерно*. Обоснуйте ваш выбор.

$$\emptyset$$
 {-3} [-4,-2] (-6,0) [-6,0]

Решение: Интервал сходимости: (-6,0) Наибольшее компактное подмножество - [-6,0], где ряд сходится равномерно.

Ответ: [-6,0] - наибольшее компактное множество в интервале сходимости

КР 2. Вариант ?.

1. Вычислите сумму ряда:

$$\sum_{n=1}^{\infty} \frac{3}{n^2 + 9n + 20}$$

Решение: Разложим знаменатель на множители: $n^2 + 9n + 20 = (n+4)(n+5)$

Разложим дробь на простейшие:

$$\frac{3}{(n+4)(n+5)} = \frac{A}{n+4} + \frac{B}{n+5}$$

Решаем систему: 3 = A(n+5) + B(n+4) При n = -4: 3 = A При n = -5: $3 = -B \Rightarrow B = -3$

Таким образом:

$$\sum_{n=1}^{\infty} \left[\frac{3}{n+4} - \frac{3}{n+5} \right] = 3 \sum_{n=1}^{\infty} \left[\frac{1}{n+4} - \frac{1}{n+5} \right]$$

Частичная сумма:

$$S_N = 3 \left[\left(\frac{1}{5} - \frac{1}{6} \right) + \left(\frac{1}{6} - \frac{1}{7} \right) + \ldots + \left(\frac{1}{N+4} - \frac{1}{N+5} \right) \right]$$

Предел при $N \to \infty$:

$$S = 3 * \frac{1}{5} = \frac{3}{5}$$

Ответ: $\frac{3}{5}$

2. Исследуйте на сходимость ряд:

$$\sum_{n=1}^{\infty}\arctan\biggl(\frac{1}{\sqrt{n^5}}\biggr)$$

Решение: Используем асимптотическую эквивалентность: $\arctan(x) \sim x$ при $x \to 0$

Таким образом:

$$\arctan\left(\frac{1}{\sqrt{n^5}}\right) \sim \frac{1}{n^{\frac{5}{2}}}$$

Ряд $\sum \frac{1}{n^{\frac{5}{2}}}$ сходится (p-ряд с p=5/2 > 1), поэтому исходный ряд сходится.

Ответ: Ряд сходится

3. Найдите множества абсолютной и условной сходимости ряда:

$$\sum_{n=1}^{\infty} \frac{(x-3)^n}{n \cdot 2^n}$$

Решение: Применим признак Даламбера:

$$\lim_{n \to \infty} \left| \frac{\frac{(x-3)^{n+1}}{(n+1)2^{n+1}}}{\frac{(x-3)^n}{n2^n}} \right| = |x-3| < 1 \Rightarrow |x-3| < 2$$

Интервал сходимости: $-2 < x - 3 < 2 \Rightarrow 1 < x < 5$

Исследуем граничные точки:

- 1. При x=1: $\sum \frac{(-2)^n}{n2^n}=\sum \frac{(-1)^n}{n}$ сходится условно (по признаку Лейбница) 2. При x=5: $\sum \frac{2^n}{n2^n}=\sum \frac{1}{n}$ расходится (гармонический ряд)

Для абсолютной сходимости: При 1 < x < 5 ряд сходится абсолютно.

Ответ:

- Множество абсолютной сходимости: (1, 5)
- Множество условной сходимости: {1}
- 4. Разложите функцию $f(x)=rac{1}{x+3}$ в ряд Тейлора в окрестности точки $x_0=-1$ и укажите область сходимости полученного ряда к f(x).

Решение: Преобразуем функцию:

$$\frac{1}{x+3} = \frac{1}{2+(x+1)} = \frac{1}{2} \cdot \frac{1}{1+\frac{x+1}{2}}$$

Используем формулу суммы геометрического ряда:

$$\frac{1}{1+t} = \sum_{n=0}^{\infty} (-t)^n, |t| < 1$$

Таким образом:

$$f(x) = \frac{1}{2} \sum_{n=0}^{\infty} \left(-\frac{x+1}{2} \right)^n = \sum_{n=0}^{\infty} \frac{(-1)^n (x+1)^n}{2^{n+1}}$$

Область сходимости:

$$\left| \frac{x+1}{2} \right| < 1 \Rightarrow |x+1| < 2 \Rightarrow -3 < x < 1$$

Ответ: Ряд Тейлора: $\sum_{n=0}^{\infty} \frac{(-1)^n (x+1)^n}{2^{n+1}}$ Область сходимости: (-3,1)

КР 2. Вариант 14.

1. Вычислите сумму ряда:

$$\sum_{n=1}^{\infty} \frac{4}{n^2 + 16n + 63}$$

Решение:

Разложим знаменатель на множители: $n^2 + 16n + 63 = (n+7)(n+9)$

Применим метод частичных дробей:

$$\frac{4}{(n+7)(n+9)} = \frac{A}{n+7} + \frac{B}{n+9}$$

$$4 = A(n+9) + B(n+7)$$

При n=-7: 4=2A, откуда A=2 При n=-9: 4=-2B, откуда B=-2

Значит:

$$\frac{4}{(n+7)(n+9)} = \frac{2}{n+7} - \frac{2}{n+9} = 2\left(\frac{1}{n+7} - \frac{1}{n+9}\right)$$

Частичная сумма:

$$\begin{split} S_N &= \sum_{n=1}^N 2 \bigg(\frac{1}{n+7} - \frac{1}{n+9} \bigg) \\ &= 2 \bigg[\bigg(\frac{1}{8} - \frac{1}{10} \bigg) + \bigg(\frac{1}{9} - \frac{1}{11} \bigg) + \bigg(\frac{1}{10} - \frac{1}{12} \bigg) + \ldots + \bigg(\frac{1}{N+7} - \frac{1}{N+9} \bigg) \bigg] \end{split}$$

Это телескопический ряд:

$$S_N = 2\left[\frac{1}{8} + \frac{1}{9} - \frac{1}{N+8} - \frac{1}{N+9}\right]$$

При $N \to \infty$:

$$\sum_{n=1}^{\infty} \frac{4}{n^2 + 16n + 63} = 2\left(\frac{1}{8} + \frac{1}{9}\right) = 2 \cdot \frac{17}{72} = \frac{17}{36}$$

Ответ: $\frac{17}{36}$

2. Исследуйте на сходимость ряд:

$$\sum_{n=1}^{\infty}\arctan\left(\frac{1}{n^3+2n^2}\right)$$

Решение:

Исследуем поведение общего члена ряда при $n \to \infty$.

При больших n:

$$\frac{1}{n^3+2n^2}=\frac{1}{n^2(n+2)}\sim \frac{1}{n^3}$$

Поскольку $\arctan(x) \sim x$ при $x \to 0$, имеем:

$$\arctan\left(\frac{1}{n^3 + 2n^2}\right) \sim \frac{1}{n^3 + 2n^2} \sim \frac{1}{n^3}$$

Применим предельный признак сравнения с рядом $\sum_{n=1}^{\infty} \frac{1}{n^3}$:

$$\lim_{n\to\infty}\frac{\arctan\left(\frac{1}{n^3+2n^2}\right)}{\frac{1}{n^3}}=\lim_{n\to\infty}\frac{n^3\arctan\left(\frac{1}{n^3+2n^2}\right)}{1}$$

Используя $\arctan(x) \sim x$ при $x \to 0$:

$$= \lim_{n \to \infty} \frac{n^3 \cdot \frac{1}{n^3 + 2n^2}}{1} = \lim_{n \to \infty} \frac{n^3}{n^3 + 2n^2} = \lim_{n \to \infty} \frac{1}{1 + \frac{2}{n^2}} = 1$$

Поскольку ряд $\sum_{n=1}^{\infty} \frac{1}{n^3}$ сходится (p-ряд с p=3>1) и предел равен 1, то по предельному признаку сравнения исходный ряд также сходится.

Ответ: Ряд сходится.

3. Найдите множества абсолютной и условной сходимости ряда:

$$\sum_{n=1}^{\infty} \frac{(x+7)^n}{(n+3)\cdot 4^n}$$

Решение:

Данный ряд является степенным рядом вида $\sum_{n=1}^\infty a_n (x+7)^n,$ где: $a_n = \frac{1}{(n+3)\cdot 4^n}$

Найдем радиус сходимости по формуле Коши-Адамара:

$$R = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|a_n|}} = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{\frac{1}{(n+3) \cdot 4^n}}}$$

$$\sqrt[n]{|a_n|} = \sqrt[n]{\frac{1}{(n+3)\cdot 4^n}} = \frac{1}{\sqrt[n]{n+3}\cdot 4}$$

Поскольку $\lim_{n \to \infty} \sqrt[n]{n+3} = 1$, получаем:

$$R = \frac{1}{\frac{1}{4}} = 4$$

Интервал сходимости: |x+7| < 4, т.е. -11 < x < -3.

Исследуем поведение на концах интервала:

При
$$x=-3$$
 (т.е. $x+7=4$): $\sum_{n=1}^{\infty} \frac{4^n}{(n+3)\cdot 4^n} = \sum_{n=1}^{\infty} \frac{1}{n+3}$

Этот ряд расходится (гармонический ряд со сдвигом).

При
$$x=-11$$
 (т.е. $x+7=-4$): $\sum_{n=1}^{\infty} \frac{(-4)^n}{(n+3)\cdot 4^n} = \sum_{n=1}^{\infty} \frac{(-1)^n}{n+3}$

Это знакочередующийся ряд. По признаку Лейбница:

- $\frac{1}{n+3} \to 0$ при $n \to \infty$
- Последовательность $\frac{1}{n+3}$ монотонно убывает

Значит, ряд сходится условно.

Проверим абсолютную сходимость при x=-11: $\sum_{n=1}^{\infty}|\frac{(-1)^n}{n+3}|=\sum_{n=1}^{\infty}\frac{1}{n+3}$ - расходится.

Ответ:

• Множество абсолютной сходимости: (-11, -3)

• Множество условной сходимости: $\{-11\}$

• Множество сходимости: [-11, -3)

4. Разложите функцию $f(x)=\frac{1}{8-x}$ в ряд Тейлора в окрестности точки $x_0=6$ и укажите область сходимости полученного ряда к f(x).

Решение:

Представим функцию в удобном для разложения виде:

$$f(x) = \frac{1}{8-x} = \frac{1}{(8-6)-(x-6)} = \frac{1}{2-(x-6)}$$

Вынесем константу:

$$f(x) = \frac{1}{2} \cdot \frac{1}{1 - \frac{x-6}{2}}$$

Используем формулу для геометрической прогрессии:

$$\displaystyle rac{1}{1-t} = \sum_{n=0}^{\infty} t^n$$
 при $|t| < 1$

где $t = \frac{x-6}{2}$.

Получаем:

$$f(x) = \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{x-6}{2}\right)^n = \frac{1}{2} \sum_{n=0}^{\infty} \frac{(x-6)^n}{2^n}$$
$$= \sum_{n=0}^{\infty} \frac{(x-6)^n}{2^{n+1}}$$

Для нахождения производных в точке $x_0 = 6$:

$$f(6)=\frac{1}{8-6}=\frac{1}{2}$$

$$f'(x)=\frac{1}{(8-x)^2}, f'(6)=\frac{1}{4}$$

$$f''(x)=\frac{2}{(8-x)^3}, f''(6)=\frac{2}{8}=\frac{1}{4}$$

$$f'''(x)=\frac{6}{(8-x)^4}, f'''(6)=\frac{6}{16}=\frac{3}{8}$$
 В общем виде: $f^{(n)}(x)=\frac{n!}{(8-x)^{n+1}}, f^{(n)}(6)=\frac{n!}{2^{n+1}}$

Ряд Тейлора:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(6)}{n!} (x-6)^n = \sum_{n=0}^{\infty} \frac{n!}{n! \cdot 2^{n+1}} (x-6)^n$$
$$= \sum_{n=0}^{\infty} \frac{(x-6)^n}{2^{n+1}}$$

Область сходимости:

Условие сходимости геометрической прогрессии: $|\frac{x-6}{2}|<1$

Это означает: |x-6| < 2

Следовательно: 4 < x < 8

Проверим поведение на концах:

• При x=4: $f(4)=\frac{1}{4}$ (функция определена), но ряд расходится • При x=8: функция не определена (полюс)

Ответ: Ряд Тейлора: $f(x) = \sum_{n=0}^{\infty} \frac{(x-6)^n}{2^{n+1}}$

Область сходимости: (4,8)

КР 2. Вариант 15.

1. Вычислите сумму ряда:

$$\sum_{n=1}^{\infty}\frac{2}{n^2+17n+72}$$

Решение: Разложим знаменатель: $n^2 + 17n + 72 = (n+8)(n+9)$ Разложим на простейшие дроби: $\frac{2}{(n+8)(n+9)}=2\left(\frac{1}{n+8}-\frac{1}{n+9}\right)$

Частичная сумма:
$$S_N=2\left[\left(\frac{1}{9}-\frac{1}{10}\right)+\left(\frac{1}{10}-\frac{1}{11}\right)+...+\left(\frac{1}{N+8}-\frac{1}{N+9}\right)\right]$$

Предел при $N \to \infty$: $S = 2\left(\frac{1}{9}\right) = \frac{2}{9}$

Otbet: $\frac{2}{9}$

2. Исследуйте на сходимость ряд:

$$\sum_{n=1}^{\infty} \left(\sqrt{n^6 + 1} - n^3 \right)$$

Решение: Умножим и разделим на сопряженное: $\sqrt{n^6+1}-n^3=\frac{1}{\sqrt{n^6+1}+n^3}\sim \frac{1}{2n^3}$

Ряд $\sum \frac{1}{2n^3}$ сходится (p=3>1), поэтому исходный ряд сходится.

Ответ: Ряд сходится

3. Найдите множества абсолютной и условной сходимости ряда:

$$\sum_{n=1}^{\infty} \frac{(x-8)^n}{n \cdot 5^n}$$

Решение: Применим признак Даламбера: $\lim_{n\to\infty} |\frac{\frac{(x-8)^{n+1}}{(n+1)5^{n+1}}|}{\frac{(x-8)^n}{2}}| = |x-8\frac{1}{5} < 1 \Rightarrow x \in (3,13)$

Граничные точки:
1. х=3:
$$\sum \frac{(-5)^n}{n5^n} = \sum \frac{(-1)^n}{n}$$
 - сходится условно
2. х=13: $\sum \frac{5^n}{n5^n} = \sum \frac{1}{n}$ - расходится

2.
$$x=13$$
: $\sum_{n=1}^{\infty} \frac{5^n}{n5^n} = \sum_{n=1}^{\infty} \frac{1}{n}$ - расходится

Ответ:

- Абсолютная сходимость: (3, 13)
- Условная сходимость: {3}

4. Разложите функцию $f(x) = \frac{1}{x+5}$ в ряд Тейлора в окрестности точки $x_0 = -3$ и укажите область сходимости полученного ряда к f(x).

Решение: Преобразуем: $\frac{1}{x+5} = \frac{1}{2+(x+3)} = \frac{1}{2} \sum_{n=0}^{\infty} \left(-\frac{x+3}{2}\right)^n$

Область сходимости: $\left| \frac{x+3}{2} \right| < 1 \Rightarrow x \in (-5,1)$

Ответ: Ряд: $\sum_{n=0}^{\infty} \frac{(-1)^n (x+3)^n}{2^{n+1}}$ Область сходимости: (-5,1)

5. Исследовать функциональный ряд на равномерную сходимость на данных множествах.

$$\sum_{n=1}^{\infty} \sin \frac{n^2 x^2}{n^4 x^4 + 1}, \quad D_1 = [0, +\infty), \quad D_2 = [1, 3].$$

Решение: Поточечный предел: $f(x) = \lim_{n \to \infty} \sin \frac{n^2 x^2}{n^4 x^4 + 1} = 0$

1. Ha $D_1 = [0, \infty)$:

При $x=rac{1}{n}$: $\sinrac{1}{n^0+1}
ightarrow\sinrac{1}{2}
eq 0$ Сходимость неравномерная

2. Ha $D_2 = [1, 3]$:

 $\sup|\sin\frac{n^2x^2}{n^4x^4+1}|\leq \sup\frac{n^2x^2}{n^4x^4}\leq \frac{9n^2}{n^4}\to 0$ Сходимость равномерная

Ответ: На D_1 - неравномерная, на D_2 - равномерная

6. Приведите пример сходящегося знакочередующегося ряда (т. е. ряда лейбницевского типа), для которого признак Лейбница не применим. Обоснуйте ответ.

Решение: Пример: $\sum (-1)^n \frac{1+(-1)^n}{n}$ Члены ряда: 0, –1, 0, 1/2, 0, –1/3, ... Не убывает по модулю, но сходится как $\sum (-1)^{\left[\frac{n}{2}\right]} \frac{1}{\frac{n}{2}}$

Ответ: Ряд $\sum {(-1)^n} \frac{1+(-1)^n}{n}$ сходится, но признак Лейбница неприменим

7. Является ли следующее условие равносильным определению равномерной сходимости функциональной последовательности $f_n:D\to\mathbb{R}$ к функции f на множестве D? Если нет, переформулируйте его, чтобы оно стало подходящим.

$$\forall x \in D \ \forall \varepsilon > 0 \ \exists n_0 : \forall n > n_0 \Rightarrow |f(x) - f(x)| < \varepsilon$$

Решение: Нет, это определение поточечной сходимости. Правильное определение:

$$\forall \varepsilon > 0 \ \exists n_0: \ \forall x \in D \ \forall n > n_0 \Rightarrow |f_{n(x)} - f(x)| < \varepsilon$$

Ответ: Нет, это условие поточечной сходимости. Для равномерной сходимости n_0 не должно зависеть от x.

8. Пусть степенной ряд по степеням (x-4) расходится при x=1. Из данных множеств выберите наибольшее, на котором ряд точно расходится. Обоснуйте ваш выбор.

$$\{1\}, [-1,1] [1,7) (7,9) (7,10] [7,+\infty]$$

Решение: Радиус сходимости $R \le |4-1| = 3$. Ряд расходится при |x-4| > R, значит при x < 1 и x > 7. Наибольшее множество расходимости - $[7, +\infty]$.

Ответ: $[7, +\infty]$ - наибольшее множество, где $|x-4| \ge 3$

КР 2. Вариант ?.

1. Вычислите сумму ряда:

$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 18n + 80}$$

Решение: Разложим знаменатель: $n^2 + 18n + 80 = (n+8)(n+10)$ Разложим на простейшие дроби: $\frac{1}{(n+8)(n+10)} = \frac{1}{2} \left(\frac{1}{n+8} - \frac{1}{n+10} \right)$

Частичная сумма:
$$S_N=\frac{1}{2}\Big[\left(\frac{1}{9}-\frac{1}{11}\right)+\left(\frac{1}{10}-\frac{1}{12}\right)+\ldots+\left(\frac{1}{N+8}-\frac{1}{N+10}\right)\Big]$$

Предел при
$$N o \infty$$
: $S = \frac{1}{2} \left(\frac{1}{9} + \frac{1}{10} \right) = \frac{19}{360}$

Ответ: $\frac{19}{360}$

2. Исследуйте на сходимость ряд:

$$\sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{n^3} \right)$$

Решение: Используем асимптотическую эквивалентность: $\ln(1+x) \sim x$ при $x \to 0$

Таким образом: $\ln(1+\frac{1}{n^3}) \sim \frac{1}{n^3}$

Ряд $\sum \frac{1}{n^3}$ сходится (p=3>1), поэтому исходный ряд сходится.

Ответ: Ряд сходится

3. Найдите множества абсолютной и условной сходимости ряда

$$\sum_{n=1}^{\infty} \frac{(x+9)^n}{n^2 \cdot 6^n}$$

Решение: Применим признак Даламбера: $\lim_{n\to\infty}|\frac{\frac{(x+9)^{n+1}}{(n+1)^26^{n+1}}}{\frac{(x+9)^n}{22n}}|=|x+9\frac{1}{6}<1\Rightarrow x\in(-15,-3)$

Граничные точки:
1.
$$x=-15$$
: $\sum \frac{(-6)^n}{n^26^n}=\sum \frac{(-1)^n}{n^2}$ - сходится абсолютно
2. $x=-3$: $\sum \frac{6^n}{n^26^n}=\sum \frac{1}{n^2}$ - сходится абсолютно

2. x=-3:
$$\sum \frac{6^n}{n^2 6^n} = \sum \frac{1}{n^2}$$
 - сходится абсолютно

Ответ:

- Абсолютная сходимость: [-15, -3]
- Условная сходимость: ∅

4. Разложите функцию $f(x) = \frac{1}{4x-3}$ в ряд Тейлора в окрестности точки $x_0 = 1$ и укажите область сходимости полученного ряда к f(x).

Решение: Преобразуем:
$$\frac{1}{4x-3} = \frac{1}{1+4(x-1)} = \sum_{n=0}^{\infty} (-1)^n 4^n (x-1)^n$$

Область сходимости:
$$|4(x-1)| < 1 \Rightarrow x \in (0.75, 1.25)$$

Ответ: Ряд:
$$\sum_{n=0}^{\infty}{(-1)^n 4^n (x-1)^n}$$
 Область сходимости: $(0.75, 1.25)$

5. Исследовать функциональный ряд на равномерную сходимость на данных множествах.

$$\sum_{n=1}^{\infty}\frac{1}{2^{nx^2}},\quad D_1=(0,1),\quad D_2=(1,+\infty)$$

Решение: Поточечный предел: $f(x) = \lim_{n \to \infty} \frac{1}{2^{nx^2}} = 0$

1. Ha $D_1 = (0,1)$:

При $x \to 0^+ \colon \sup \frac{1}{2^{nx^2}} \to 1 \neq 0$ Сходимость неравномерная

2. Ha $D_2 = (1, \infty)$:

 $\sup \frac{1}{2^{nx^2}} \leq \frac{1}{2^n} \to 0$ Сходимость равномерная

Ответ: На D_1 - неравномерная, на D_2 - равномерная

6. Приведите пример расходящегося числового ряда, расходимость которого показать при помощи интегрального признака Коши. Обоснуйте ответ.

Решение: Пример: гармонический ряд $\sum_{n=1}^{\infty} \frac{1}{n}$ Функция $f(x) = \frac{1}{x}$ непрерывна, положительна и убывает на $[1,\infty)$. Интеграл $\int_{1}^{\infty} \frac{1}{x} dx = \infty$ расходится, значит ряд расходится.

Ответ: Гармонический ряд $\sum \frac{1}{n}$ расходится по интегральному признаку

7. Является ли следующее условие равносильным определению *равномерной* сходимости функционального ряда с частичными суммами $S_{n(x)}$ к сумме S(x) на множестве D? Если нет, переформулируйте его, чтобы оно стало подходящим

$$\forall x \in D \ \forall \varepsilon > 0 \ \exists n_0 : \forall n > n_0 \Rightarrow |S_{n(x)} - S(x)| < \varepsilon$$

Решение: Нет, это определение поточечной сходимости. Правильное определение:

$$\forall \varepsilon > 0 \ \exists n_0: \ \forall x \in D \ \forall n > n_0 \Rightarrow |S_{n(x)} - S(x)| < \varepsilon$$

Ответ: Нет, для равномерной сходимости n_0 не должно зависеть от x

8. Пусть степенной ряд по степеням (x-6) *сходится* при x=2. Из данных множеств выберите наибольшее, на котором ряд точно *сходится*. Обоснуйте ваш выбор.

$$\{2\}, [2,6] [2,9] [2,10) [2,10] [2,+\infty)$$

Решение: Радиус сходимости $R \ge |6-2| = 4$. Ряд сходится при |x-6| < R, значит при $x \in (2,10)$. Наибольшее множество сходимости - [2,10).

Ответ: [2, 10) - наибольшее множество, где $|x-6| \le 4$

КР 1. Вариант 13.

1. Вычислить площадь фигуры, ограниченной данными кривыми

$$y = xe^{-3x}, \quad y = 0, \quad x = 1$$

Решение:

Площадь фигуры вычисляется как определенный интеграл:

$$S = \int_0^1 x e^{-3x} \ dx$$

Используем интегрирование по частям: u = x, $dv = e^{-3x}dx$

Тогда $du=dx,v=-rac{1}{3}e^{-3x}$

$$\int xe^{-3x}dx = -\frac{x}{3}e^{-3x} - \int \left(-\frac{1}{3}e^{-3x}\right)dx$$
$$= -\frac{x}{3}e^{-3x} + \frac{1}{3}\int e^{-3x}dx$$
$$= -\frac{x}{3}e^{-3x} + \frac{1}{3}\cdot\left(-\frac{1}{3}e^{-3x}\right)$$
$$= -\frac{x}{3}e^{-3x} - \frac{1}{9}e^{-3x} = -\frac{e^{-3x}}{9}(3x+1)$$

Вычисляем определенный интеграл:

$$S = \left[-\frac{e^{-3x}}{9} (3x+1) \right]_0^1$$
$$= -\frac{e^{-3}}{9} (3+1) - \left(-\frac{1}{9} (0+1) \right)$$
$$= -\frac{4e^{-3}}{9} + \frac{1}{9} = \frac{1-4e^{-3}}{9}$$

Ответ: $S = \frac{1-4e^{-3}}{9}$

2. Вычислить длину дуги кривой

$$\begin{cases} x = t^2 \cos t \\ y = t^2 \sin t \end{cases}, \quad t \in [0, 1]$$

Решение:

Для параметрически заданной кривой длина дуги вычисляется по формуле:

$$L = \int_0^1 \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

Найдем производные:

$$\frac{dx}{dt} = \frac{d}{dt}(t^2\cos t) = 2t\cos t - t^2\sin t$$

$$\frac{dy}{dt} = \frac{d}{dt}(t^2 \sin t) = 2t \sin t + t^2 \cos t$$

Вычислим $\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2$:

$$(2t\cos t - t^2\sin t)^2 + (2t\sin t + t^2\cos t)^2$$

$$= 4t^2\cos^2 t - 4t^3\cos t\sin t + t^4\sin^2 t + 4t^2\sin^2 t + 4t^3\sin t\cos t + t^4\cos^2 t$$

$$= 4t^2(\cos^2 t + \sin^2 t) + t^4(\sin^2 t + \cos^2 t)$$

$$= 4t^2 + t^4 = t^2(4 + t^2)$$

Тогда:

$$L = \int_0^1 \sqrt{t^2(4+t^2)} \ dt = \int_0^1 t\sqrt{4+t^2} \ dt$$

Используем подстановку $u=4+t^2$, тогда $du=2t\ dt$, $t\ dt=\frac{1}{2}du$

При t=0: u=4, при t=1: u=5

$$L = \int_{4}^{5} \frac{1}{2} \sqrt{u} \ du = \frac{1}{2} \int_{4}^{5} u^{\frac{1}{2}} \ du$$
$$= \frac{1}{2} \left[\frac{2}{3} u^{\frac{3}{2}} \right]_{4}^{5} = \frac{1}{3} \left[u^{\frac{3}{2}} \right]_{4}^{5}$$
$$= \frac{1}{3} \left(5^{\frac{3}{2}} - 4^{\frac{3}{2}} \right) = \frac{1}{3} \left(5\sqrt{5} - 8 \right)$$

Ответ: $L = \frac{5\sqrt{5}-8}{3}$

3. Вычислить несобственный интеграл

$$\int_{1}^{-x} \frac{\arctan x}{x^3} \ dx$$

Решение:

Рассматриваем несобственный интеграл:

$$\int_{1}^{-\infty} \frac{\arctan x}{x^3} \ dx = \lim_{a \to -\infty} \int_{1}^{a} \frac{\arctan x}{x^3} \ dx$$

Используем интегрирование по частям: $u=\arctan x,\, dv=rac{dx}{x^3}=x^{-3}dx$

Тогда
$$du=rac{dx}{1+x^2},\,v=rac{x^{-2}}{-2}=-rac{1}{2x^2}$$

$$\begin{split} \int \frac{\arctan x}{x^3} dx &= -\frac{\arctan x}{2x^2} - \int \left(-\frac{1}{2x^2} \right) \cdot \frac{1}{1+x^2} dx \\ &= -\frac{\arctan x}{2x^2} + \frac{1}{2} \int \frac{dx}{x^2(1+x^2)} \end{split}$$

Для вычисления $\int \frac{dx}{x^2(1+x^2)}$ используем разложение на простые дроби:

$$\frac{1}{x^2(1+x^2)} = \frac{A}{x} + \frac{B}{x^2} + \frac{Cx+D}{1+x^2}$$

Приводя к общему знаменателю и сравнивая коэффициенты, получаем: $A=0,\,B=1,\,C=0,\,D=-1$

$$\frac{1}{x^2(1+x^2)} = \frac{1}{x^2} - \frac{1}{1+x^2}$$

$$\int \frac{dx}{x^2(1+x^2)} = \int \frac{dx}{x^2} - \int \frac{dx}{1+x^2} = -\frac{1}{x} - \arctan x$$

Таким образом:

$$\begin{split} \int \frac{\arctan x}{x^3} dx &= -\frac{\arctan x}{2x^2} + \frac{1}{2} \left(-\frac{1}{x} - \arctan x \right) \\ &= -\frac{\arctan x}{2x^2} - \frac{1}{2x} - \frac{\arctan x}{2} \end{split}$$

Вычисляем предел:

$$\lim_{a \to -\infty} \left[-\frac{\arctan x}{2x^2} - \frac{1}{2x} - \frac{\arctan x}{2} \right]_1^a$$

При
$$x=1$$
: $-\frac{\frac{\pi}{4}}{\frac{1}{2}}-\frac{1}{2}-\frac{\frac{\pi}{4}}{\frac{1}{2}}=-\frac{\pi}{4}-\frac{1}{2}-\frac{\pi}{8}=-\frac{\pi}{8}-\frac{1}{2}$

При $x \to -\infty$: $\arctan x \to -\frac{\pi}{2}$, поэтому выражение стремится к $0-0-\frac{(-\frac{\pi}{2})}{2}=\frac{\pi}{4}$

$$\int_{1}^{-\infty} \frac{\arctan x}{x^3} dx = \frac{\pi}{4} - \left(-\frac{\pi}{8} - \frac{1}{2} \right) = \frac{\pi}{4} + \frac{\pi}{8} + \frac{1}{2} = \frac{3\pi}{8} + \frac{1}{2}$$

Ответ: Интеграл расходится (при более точном анализе поведения на бесконечности)

4. Исследовать на сходимость интеграл

$$\int_0^1 \frac{\ln(1+x^2)}{x^{\frac{1}{2}}}$$

Решение:

Исследуем несобственный интеграл второго рода (особенность в точке x=0).

Проанализируем поведение подынтегральной функции при $x \to 0^+$:

$$\ln(1+x^2) \sim x^2$$
 при $x \to 0$

Поэтому:
$$\frac{\ln(1+x^2)}{x^{\frac{1}{2}}} \sim \frac{x^2}{x^{\frac{1}{2}}} = x^{\frac{3}{2}}$$
 при $x o 0^+$

Поскольку $\int_0^1 x^{\frac{3}{2}} dx$ сходится (показатель степени $\frac{3}{2} > -1$), то по признаку сравнения в предельной форме исходный интеграл сходится.

Для строгого доказательства вычислим предел:

$$\lim_{x \to 0^+} \frac{\frac{\ln(1+x^2)}{x^{\frac{1}{2}}}}{x^{\frac{3}{2}}} = \lim_{x \to 0^+} \frac{\ln(1+x^2)}{x^2} = \lim_{x \to 0^+} \frac{\ln(1+x^2)}{x^2}$$

Применяя правило Лопиталя:

$$\lim_{x \to 0^+} \frac{\ln(1+x^2)}{x^2} = \lim_{x \to 0^+} \frac{\frac{2x}{1+x^2}}{2x} = \lim_{x \to 0^+} \frac{1}{1+x^2} = 1$$

Поскольку предел конечен и положителен, и $\int_0^1 x^{\frac{3}{2}} dx$ сходится, то исходный интеграл сходится.

КР 1. Вариант 14.

1. Вычислить площадь фигуры, ограниченной данными кривыми

$$y = \frac{\arctan 2x}{1 + 4x^2}, \quad y = 0, \quad x = \frac{1}{2}$$

Решение:

Площадь фигуры вычисляется по формуле:

$$S = \int_{a}^{b} |f(x)| \ dx$$

Нужно найти пределы интегрирования. Функция $y=\frac{\arctan 2x}{1+4x^2}$ пересекается с осью x (т.е. с y=0) когда $\arctan 2x=0$, что происходит при x=0.

Поскольку $\arctan 2x > 0$ при x > 0, функция положительна на интервале $\left(0, \frac{1}{2}\right)$.

$$S = \int_0^{\frac{1}{2}} \frac{\arctan 2x}{1 + 4x^2} \ dx$$

Для вычисления этого интеграла используем замену: u=2x, тогда $du=2\,\,dx,\,dx=\frac{du}{2}$.

При x=0: u=0; при $x=\frac{1}{2}$: u=1.

$$S = \int_0^1 \frac{\arctan u}{1 + u^2} \cdot \frac{du}{2} = \frac{1}{2} \int_0^1 \frac{\arctan u}{1 + u^2} \ du$$

Используем интегрирование по частям: $v = \arctan u$, $dw = \frac{du}{1+u^2}$

 $dv = \frac{du}{1+u^2}, w = \arctan u$

$$\int \frac{\arctan u}{1+u^2} \ du = (\arctan u)^2 - \int \frac{\arctan u}{1+u^2} \ du$$

Получаем: $2\int rac{\arctan u}{1+u^2} \ du = (\arctan u)^2$

Значит: $\int \frac{\arctan u}{1+u^2} \ du = \frac{(\arctan u)^2}{2}$

$$S = \frac{1}{2} \cdot \frac{(\arctan u)^2}{2} \mid_0^1 = \frac{1}{4} \left[(\arctan 1)^2 - (\arctan 0)^2 \right] = \frac{1}{4} \cdot \left(\frac{\pi}{4} \right)^2 = \frac{\pi^2}{64}$$

Ответ: $S = \frac{\pi^2}{64}$

2. Вычислить длину дуги кривой

$$y = 1 - \ln \cos x, \quad 0 \le x \le \frac{\pi}{3}$$

Решение:

Длина дуги кривой вычисляется по формуле:

$$L = \int_a^b \sqrt{1 + \left(y'\right)^2} \ dx$$

Найдем производную:

$$y' = \frac{d}{dx}(1 - \ln\cos x) = -\frac{1}{\cos x} \cdot (-\sin x) = \frac{\sin x}{\cos x} = \tan x$$

$$L = \int_0^{\frac{\pi}{3}} \sqrt{1 + \tan^2 x} \, dx = \int_0^{\frac{\pi}{3}} \sqrt{\sec^2 x} \, dx = \int_0^{\frac{\pi}{3}} \sec x \, dx$$

$$\int \sec x \, dx = \ln|\sec x + \tan x| + C$$

$$L = \ln|\sec x + \tan x| \mid_0^{\frac{\pi}{3}}$$

При
$$x=\frac{\pi}{3}$$
: $\sec\left(\frac{\pi}{3}\right)=\frac{1}{\cos\left(\frac{\pi}{3}\right)}=\frac{1}{\frac{1}{2}}=2$, $\tan\left(\frac{\pi}{3}\right)=\sqrt{3}$

При x = 0: sec(0) = 1, tan(0) = 0

$$L = \ln|2 + \sqrt{3}| - \ln|1 + 0| = \ln(2 + \sqrt{3})$$

Ответ: $L = \ln(2 + \sqrt{3})$

3. Вычислить несобственный интеграл

$$\int_0^{+\infty} x \cdot 2^{-4x} \ dx$$

Решение:

$$\int_0^{+\infty} x \cdot 2^{-4x} \ dx = \int_0^{+\infty} x \cdot e^{-4x \ln 2} \ dx$$

Пусть $a=4\ln 2$, тогда:

$$\int_0^{+\infty} x \cdot e^{-ax} \ dx$$

Используем интегрирование по частям: $u=x,\,dv=e^{-ax}dx$

$$du = dx$$
, $v = -\frac{1}{a}e^{-ax}$

$$\int xe^{-ax}dx = -\frac{x}{a}e^{-ax} - \int \left(-\frac{1}{a}e^{-ax}\right)dx$$
$$= -\frac{x}{a}e^{-ax} - \frac{1}{a^2}e^{-ax} = -\frac{e^{-ax}}{a^2}(ax+1)$$
$$\int_0^{+\infty} xe^{-ax}dx = \lim_{t \to +\infty} \left[-\frac{e^{-ax}}{a^2}(ax+1)\right]_0^t$$

При $x \to +\infty$: $e^{-ax} \to 0$ быстрее, чем растет (ax+1), поэтому предел равен 0.

При
$$x=0$$
: $-\frac{e^0}{a^2}(0+1)=-\frac{1}{a^2}$

$$\int_{0}^{+\infty} x e^{-ax} dx = 0 - \left(-\frac{1}{a^2} \right) = \frac{1}{a^2}$$

Подставляем $a=4 \ln 2$:

$$\int_0^{+\infty} x \cdot 2^{-4x} \ dx = \frac{1}{(4\ln 2)^{20}} = \frac{1}{16(\ln 2)^2}$$

Ответ: $\frac{1}{16(\ln 2)^2}$

4. Исследовать на сходимость интеграл

$$\int_{1}^{+\infty} \frac{2 + \cos x}{x^2} \ dx$$

Решение:

Для исследования сходимости несобственного интеграла используем признаки сравнения.

Заметим, что $|\cos x| \le 1$, поэтому:

$$1 \le 2 + \cos x \le 3$$

Следовательно:

$$\frac{1}{x^2} \le \frac{2 + \cos x}{x^2} \le \frac{3}{x^2}$$

Рассмотрим интеграл $\int_1^{+\infty} \frac{1}{x^2} dx$:

$$\int_{1}^{+\infty} \frac{1}{x^2} dx = \lim_{t \to +\infty} \left[-\frac{1}{x} \right]_{1}^{t} = \lim_{t \to +\infty} \left(-\frac{1}{t} + 1 \right) = 1$$

Этот интеграл сходится.

По признаку сравнения, поскольку:

$$0<\frac{2+\cos x}{x^2}\leq \frac{3}{x^2}$$

и интеграл $\int_1^{+\infty} \frac{3}{x^2} \ dx = 3 \int_1^{+\infty} \frac{1}{x^2} \ dx = 3$ сходится, то исходный интеграл также сходится.

Можно также применить признак Дирихле: функция $2 + \cos x$ ограничена, а $\frac{1}{x^2}$ монотонно убывает к нулю при $x \to +\infty$.

КР 1. Вариант 15.

1. Вычислить площадь фигуры, ограниченной данными кривыми

$$y = xe^{-2x}, \quad y = 0, \quad x = 2$$

Решение:

Площадь фигуры вычисляется по формуле:

$$S = \int_0^2 x e^{-2x} \ dx$$

Вычислим интеграл методом интегрирования по частям. Пусть:

- u=x, тогда du=dx
- $dv=e^{-2x}dx$, тогда $v=-\frac{1}{2}e^{-2x}$

По формуле интегрирования по частям:

$$\begin{split} \int x e^{-2x} \ dx &= x \cdot \left(-\frac{1}{2} e^{-2x} \right) - \int \left(-\frac{1}{2} e^{-2x} \right) \ dx \\ &= -\frac{x}{2} e^{-2x} + \frac{1}{2} \int e^{-2x} \ dx \\ &= -\frac{x}{2} e^{-2x} + \frac{1}{2} \cdot \left(-\frac{1}{2} e^{-2x} \right) + C \\ &= -\frac{x}{2} e^{-2x} - \frac{1}{4} e^{-2x} + C = -\frac{e^{-2x}}{4} (2x+1) + C \end{split}$$

Вычисляем определенный интеграл:

$$S = \left[-\frac{e^{-2x}}{4} (2x+1) \right]_0^2$$
$$= -\frac{e^{-4}}{4} (4+1) - \left(-\frac{1}{4} (0+1) \right)$$
$$= -\frac{5e^{-4}}{4} + \frac{1}{4} = \frac{1-5e^{-4}}{4}$$

Ответ: $S = \frac{1 - 5e^{-4}}{4}$ кв. ед.

2. Вычислить длину дуги кривой

$$y = \ln \sin x, \quad \frac{\pi}{3} \le x \le \frac{2\pi}{3}$$

Решение:

Длина дуги кривой y=f(x) вычисляется по формуле:

$$L = \int_{a}^{b} \sqrt{1 + \left(y'\right)^2} \ dx$$

Найдем производную:

$$y' = \frac{d}{dx}(\ln \sin x) = \frac{\cos x}{\sin x} = \cot x$$

Тогда:

$$L = \int_{\frac{\pi}{3}}^{2\frac{\pi}{3}} \sqrt{1 + \cot^2 x} \ dx$$

Используем тождество $1 + \cot^2 x = \csc^2 x$:

$$L = \int_{\frac{\pi}{3}}^{2\frac{\pi}{3}} \csc x \, dx = \int_{\frac{\pi}{3}}^{2\frac{\pi}{3}} \frac{1}{\sin x} \, dx$$

Интеграл от $\csc x$ равен $\ln|\csc x - \cot x| + C$:

$$L = [\ln|\csc x - \cot x]_{\frac{\pi}{3}}^{\frac{2\pi}{3}}$$

Вычисляем значения в пределах:

• При $x=\frac{2\pi}{3}$: $\sin\frac{2\pi}{3}=\frac{\sqrt{3}}{2},\cos\frac{2\pi}{3}=-\frac{1}{2}$ • При $x=\frac{\pi}{3}$: $\sin\frac{\pi}{3}=\frac{\sqrt{3}}{2},\cos\frac{\pi}{3}=\frac{1}{2}$

• При
$$x = \frac{\pi}{3}$$
: $\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2}$, $\cos \frac{\pi}{3} = \frac{1}{2}$

$$\csc\frac{2\pi}{3} - \cot\frac{2\pi}{3} = \frac{2}{\sqrt{3}} - \left(-\frac{1}{\sqrt{3}}\right) = \frac{2}{\sqrt{3}} + \frac{1}{\sqrt{3}} = \frac{3}{\sqrt{3}} = \sqrt{3}$$

$$\csc\frac{\pi}{3} - \cot\frac{\pi}{3} = \frac{2}{\sqrt{3}} - \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$$

$$L = \ln \sqrt{3} - \ln \frac{\sqrt{3}}{3} = \ln \sqrt{3} - \ln \sqrt{3} + \ln 3 = \ln 3$$

Ответ: $L = \ln 3$

3. Вычислить несобственный интеграл

$$\int_{-\infty}^{1} x \cdot e^{2x} \ dx$$

Решение:

Несобственный интеграл первого рода:

$$\int_{-\infty}^{1} xe^{2x} dx = \lim_{t \to -\infty} \int_{t}^{1} xe^{2x} dx$$

Вычислим интеграл методом интегрирования по частям:

- u=x, тогда du=dx
- $dv=e^{2x}dx$, тогда $v=rac{1}{2}e^{2x}$

$$\int xe^{2x} \ dx = x \cdot \frac{1}{2}e^{2x} - \int \frac{1}{2}e^{2x} \ dx$$

$$=\frac{x}{2}e^{2x}-\frac{1}{2}\cdot\frac{1}{2}e^{2x}+C=\frac{e^{2x}}{4}(2x-1)+C$$

Вычисляем определенный интеграл:

$$\begin{split} \int_t^1 x e^{2x} \ dx &= \left[\frac{e^{2x}}{4}(2x-1)\right]_t^1 \\ &= \frac{e^2}{4}(2-1) - \frac{e^{2t}}{4}(2t-1) = \frac{e^2}{4} - \frac{e^{2t}}{4}(2t-1) \end{split}$$

Находим предел при $t \to -\infty$:

$$\lim_{t\to -\infty} \left\lceil \frac{e^2}{4} - \frac{e^{2t}}{4}(2t-1) \right\rceil$$

При $t \to -\infty$: $e^{2t} \to 0$, поэтому $\frac{e^{2t}}{4}(2t-1) \to 0$

Ответ:
$$\int_{-\infty}^1 x e^{2x} \ dx = \frac{e^2}{4}$$

4. Исследовать на сходимость интеграл

$$\int_0^1 \frac{\sin x}{x\sqrt{x}} \ dx$$

Решение:

Данный интеграл является несобственным интегралом второго рода с особенностью в точке x=0.

$$\int_0^1 \frac{\sin x}{x\sqrt{x}} \ dx = \int_0^1 \frac{\sin x}{x^{\frac{3}{2}}} \ dx$$

Исследуем поведение подынтегральной функции при $x \to 0^+$:

Используем эквивалентность $\sin x \sim x$ при $x \to 0$: $\frac{\sin x}{x^2} \sim \frac{x}{x^2} = \frac{1}{x^2} = \frac{1}{\sqrt{x}}$ при $x \to 0^+$

Исследуем сходимость интеграла $\int_0^1 \frac{1}{\sqrt{x}} dx$:

$$\int_0^1 x^{-\frac{1}{2}} \ dx = \lim_{\varepsilon \to 0^+} \int_\varepsilon^1 x^{-\frac{1}{2}} \ dx$$

$$= \lim_{\varepsilon \to 0^+} \left[\frac{x^{\frac{1}{2}}}{\frac{1}{2}} \right]_{\varepsilon}^1 = \lim_{\varepsilon \to 0^+} \left[2\sqrt{x} \right]_{\varepsilon}^1$$

$$= \lim_{\varepsilon \to 0^+} \left(2 \cdot 1 - 2\sqrt{\varepsilon} \right) = 2 - 0 = 2$$

Поскольку показатель степени $-\frac{1}{2}>-1$, интеграл $\int_0^1 \frac{1}{\sqrt{x}} \ dx$ сходится.

По признаку сравнения в предельной форме: если $\lim_{x\to 0^+} \frac{f(x)}{g(x)} = L$, где $0 < L < +\infty$, то интегралы $\int_0^1 f(x) \ dx$ и $\int_0^1 g(x) \ dx$ одинаково сходятся или расходятся.

$$\lim_{x \to 0^+} \frac{\frac{\sin x}{x^{\frac{3}{2}}}}{\frac{1}{\sqrt{x}}} = \lim_{x \to 0^+} \frac{\sin x}{x} = 1$$

КР 1. Вариант 16.

1. Вычислить площадь фигуры, ограниченной данными кривыми

$$y = \frac{\arcsin x}{\sqrt{1 - x^2}}, \quad y = 0, \quad x = \frac{1}{2}$$

Решение:

Найдем область интегрирования. Функция $y=rac{\arcsin x}{\sqrt{1-x^2}}$ определена при $x\in (-1,1)$ и x
eq 0.

При
$$x=rac{1}{2}$$
: $y=rac{\arcsin(rac{1}{2})}{\sqrt{1-rac{1}{4}}}=rac{rac{\pi}{6}}{rac{\sqrt{3}}{2}}=rac{\pi}{3\sqrt{3}}$

Функция положительна на (0,1), поэтому площадь:

$$S = \int_0^{\frac{1}{2}} \frac{\arcsin x}{\sqrt{1 - x^2}} dx$$

Используем подстановку $x = \sin t$, $dx = \cos t dt$:

- При x = 0: t = 0
- При $x=\frac{1}{2}$: $t=\frac{\pi}{6}$ $\sqrt{1-x^2}=\sqrt{1-\sin^2 t}=\cos t$

$$S = \int_0^{\frac{\pi}{6}} \frac{t}{\cos t} \cos t \ dt = \int_0^{\frac{\pi}{6}} t \ dt$$

$$S = \left[\frac{t^2}{2}\right]_0^{\frac{\pi}{6}} = \frac{1}{2} \cdot \left(\frac{\pi}{6}\right)^2 = \frac{\pi^2}{72}$$

Ответ: $S = \frac{\pi^2}{72}$

2. Вычислить длину дуги кривой

$$\begin{cases} x=2t^2\\ y=3t^3, & t\in [0,1] \end{cases}$$

Решение:

Найдем производные параметрических функций:

$$\frac{dx}{dt} = 4t, \quad \frac{dy}{dt} = 9t^2$$

Длина дуги параметрической кривой:

$$L = \int_0^1 \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$

$$L = \int_0^1 \sqrt{(4t)^2 + (9t^2)^2} dt = \int_0^1 \sqrt{16t^2 + 81t^4} dt$$

$$L = \int_0^1 t\sqrt{16 + 81t^2} dt$$

Используем подстановку $u=16+81t^2,\, du=162t\,\, dt,\, t\,\, dt=\frac{du}{162}$:

• При
$$t = 0$$
: $u = 16$

• При
$$t = 1$$
: $u = 97$

$$\begin{split} L &= \int_{16}^{97} \frac{\sqrt{u}}{162} \; du = \frac{1}{162} \int_{16}^{97} u^{\frac{1}{2}} \; du \\ L &= \frac{1}{162} \cdot \left[\frac{2}{3} u^{\frac{3}{2}} \right]_{16}^{97} = \frac{1}{243} \left(97^{\frac{3}{2}} - 16^{\frac{3}{2}} \right) \\ L &= \frac{1}{243} \left(97 \sqrt{97} - 64 \right) \end{split}$$

Ответ:
$$L = \frac{97\sqrt{97}-64}{243}$$

3. Вычислить несобственный интеграл

$$\int_{1}^{+\infty} \frac{\ln x}{x^3} \ dx$$

Решение:

Вычислим несобственный интеграл:

$$\int_{1}^{+\infty} \frac{\ln x}{x^3} \ dx = \lim_{b \to +\infty} \int_{1}^{b} \frac{\ln x}{x^3} \ dx$$

Используем интегрирование по частям: $u=\ln x,\, dv=\frac{dx}{x^3}=x^{-3}dx\,\, du=\frac{dx}{x},\, v=\frac{x^{-2}}{-2}=-\frac{1}{2x^2}$

$$\begin{split} \int \frac{\ln x}{x^3} dx &= \ln x \cdot \left(-\frac{1}{2x^2} \right) - \int \left(-\frac{1}{2x^2} \right) \cdot \frac{dx}{x} \\ &= -\frac{\ln x}{2x^2} + \frac{1}{2} \int \frac{dx}{x^3} = -\frac{\ln x}{2x^2} + \frac{1}{2} \cdot \frac{-1}{2x^2} \\ &= -\frac{\ln x}{2x^2} - \frac{1}{4x^2} = -\frac{2\ln x + 1}{4x^2} \end{split}$$

Теперь вычислим предел:

$$\begin{split} \int_{1}^{+\infty} \frac{\ln x}{x^3} dx &= \lim_{b \to +\infty} \left[-\frac{2 \ln x + 1}{4x^2} \right]_{1}^{b} \\ &= \lim_{b \to +\infty} \left(-\frac{2 \ln b + 1}{4b^2} \right) - \left(-\frac{2 \ln 1 + 1}{4 \cdot 1^2} \right) \\ &= 0 - \left(-\frac{1}{4} \right) = \frac{1}{4} \end{split}$$

Ответ: Интеграл сходится и равен $\frac{1}{4}$

4. Исследовать на сходимость интеграл

$$\int_{1}^{+\infty} \frac{4 - \sin^2 x}{1 + x^2} \ dx$$

Решение:

Исследуем поведение подынтегральной функции при $x \to +\infty$.

Поскольку $0 \le \sin^2 x \le 1$, имеем:

$$3 < 4 - \sin^2 x < 4$$

Следовательно:

$$\frac{3}{1+x^2} \le \frac{4-\sin^2 x}{1+x^2} \le \frac{4}{1+x^2}$$

Исследуем сходимость интегралов-мажорант и миноранты:

1)
$$\int_1^{+\infty} \frac{4}{1+x^2} dx = 4 \int_1^{+\infty} \frac{dx}{1+x^2} = 4 [\arctan x]_1^{+\infty} = 4 (\frac{\pi}{2} - \frac{\pi}{4}) = \pi$$
 (сходится)

2)
$$\int_1^{+\infty} \frac{3}{1+x^2} dx = 3 \int_1^{+\infty} \frac{dx}{1+x^2} = 3 [\arctan x]_1^{+\infty} = \frac{3\pi}{4}$$
 (сходится)

По признаку сравнения, поскольку:

$$0<\frac{4-\sin^2 x}{1+x^2}\leq \frac{4}{1+x^2}$$

и $\int_1^{+\infty} \frac{4}{1+x^2} dx$ сходится, то исходный интеграл также сходится.

Более того, можем оценить его значение:

$$\frac{3\pi}{4} \le \int_{1}^{+\infty} \frac{4 - \sin^2 x}{1 + x^2} dx \le \pi$$

КР 1. Вариант 20.

1. Вычислить площадь фигуры, ограниченной данными кривыми

$$y = (x-1)\ln(x-1), \quad y = 0, \quad x = e+1$$

Решение:

Функция $y = (x - 1) \ln(x - 1)$ определена при x > 1.

Найдем точки пересечения с осью Ox (где y=0): $(x-1)\ln(x-1)=0$

Это происходит при x-1=1, т.е. x=2 (поскольку $\ln(x-1)=0$ при x-1=1).

На интервале [2, e+1] функция положительна, поэтому площады:

$$S = \int_{2}^{e+1} (x-1) \ln(x-1) \ dx$$

Используем замену переменной: пусть u = x - 1, тогда du = dx.

При x=2: u=1 При x=e+1: u=e

$$S = \int_{1}^{e} u \ln u \ du$$

Применим интегрирование по частям: $v = \ln u$, $dw = u \ du \ dv = \frac{du}{u}$, $w = \frac{u^2}{2}$

$$\int u \ln u \ du = \ln u \cdot \frac{u^2}{2} - \int \frac{u^2}{2} \cdot \frac{du}{u} = \frac{u^2 \ln u}{2} - \frac{1}{2} \int u \ du$$
$$= \frac{u^2 \ln u}{2} - \frac{u^2}{4} = \frac{u^2}{4} (2 \ln u - 1)$$

Вычисляем определенный интеграл:

$$\begin{split} S &= \left[\frac{u^2}{4}(2\ln u - 1)\right]_1^e = \frac{e^2}{4}(2\ln e - 1) - \frac{1^2}{4}(2\ln 1 - 1) \\ &= \frac{e^2}{4}(2\cdot 1 - 1) - \frac{1}{4}(0 - 1) = \frac{e^2}{4} + \frac{1}{4} = \frac{e^2 + 1}{4} \end{split}$$

Ответ: $S = \frac{e^2 + 1}{4}$

2. Вычислить длину дуги кривой

$$x = \frac{y^2}{4} - \frac{1}{2} \ln y, \quad 1 \le y \le 2$$

Решение:

Для кривой, заданной параметрически как x = f(y), длина дуги вычисляется по формуле:

$$L = \int_a^b \sqrt{1 + \left(x_y'\right)^2} \ dy$$

Найдем производную x'_{y} :

$$x_y' = \frac{dx}{dy} = \frac{d}{dy} \left[\frac{y^2}{4} - \frac{1}{2} \ln y \right] = \frac{2y}{4} - \frac{1}{2} \cdot \frac{1}{y} = \frac{y}{2} - \frac{1}{2y}$$

Вычислим $(x'_y)^2$:

$$\left(x_y'\right)^2 = \left(\frac{y}{2} - \frac{1}{2y}\right)^2 = \frac{y^2}{4} - 2 \cdot \frac{y}{2} \cdot \frac{1}{2y} + \frac{1}{4y^2} = \frac{y^2}{4} - \frac{1}{2} + \frac{1}{4y^2}$$

Найдем подкоренное выражение:

$$1 + (x_y')^2 = 1 + \frac{y^2}{4} - \frac{1}{2} + \frac{1}{4y^2} = \frac{y^2}{4} + \frac{1}{2} + \frac{1}{4y^2}$$

Попробуем представить это как полный квадрат:

$$1 + (x_y')^2 = \frac{y^2}{4} + \frac{1}{2} + \frac{1}{4y^2} = \frac{y^2}{4} + 2 \cdot \frac{y}{2} \cdot \frac{1}{2y} + \frac{1}{4y^2} = \left(\frac{y}{2} + \frac{1}{2y}\right)^2$$

Тогда:

$$\sqrt{1 + (x_y')^2} = \frac{y}{2} + \frac{1}{2y}$$

Длина дуги:

$$L = \int_{1}^{2} \left(\frac{y}{2} + \frac{1}{2y}\right) dy = \left[\frac{y^{2}}{4} + \frac{1}{2}\ln y\right]_{1}^{2}$$

$$L = \left(\frac{4}{4} + \frac{1}{2}\ln 2\right) - \left(\frac{1}{4} + \frac{1}{2}\ln 1\right) = 1 + \frac{\ln 2}{2} - \frac{1}{4} = \frac{3}{4} + \frac{\ln 2}{2}$$

Ответ: $L = \frac{3}{4} + \frac{\ln 2}{2}$

3. Вычислить несобственный интеграл

$$\int_{1}^{+\infty} \frac{x^3 dx}{1 + x^8}$$

Решение:

Используем замену переменной: пусть $u=x^4$, тогда $du=4x^3dx$, откуда $x^3dx=\frac{du}{4}$.

При x=1: u=1 При $x\to +\infty$: $u\to +\infty$

$$\int_{1}^{+\infty} \frac{x^3 dx}{1+x^8} = \int_{1}^{+\infty} \frac{1}{4} \cdot \frac{du}{1+u^2} = \frac{1}{4} \int_{1}^{+\infty} \frac{du}{1+u^2}$$

Интеграл $\int \frac{du}{1+u^2} = \arctan u + C$:

$$\begin{split} \frac{1}{4} \int_1^{+\infty} \frac{du}{1+u^2} &= \frac{1}{4} \lim_{t \to +\infty} \left[\arctan u\right]_1^t \\ &= \frac{1}{4} \lim_{t \to +\infty} \left(\arctan t - \arctan 1\right) = \frac{1}{4} \left(\frac{\pi}{2} - \frac{\pi}{4}\right) = \frac{1}{4} \cdot \frac{\pi}{4} = \frac{\pi}{16} \end{split}$$

4. Исследовать на сходимость интеграл

$$\int_{1}^{+\infty} \frac{\arctan x}{1+x^6} \ dx$$

Решение:

Данный интеграл является несобственным интегралом 1-го рода. Исследуем его сходимость.

При $x \to +\infty$:

- $\arctan x o \frac{\pi}{2}$ (ограниченная функция) $1+x^6 \sim x^6$

Поэтому при больших x:

$$\frac{\arctan x}{1+x^6} \sim \frac{\frac{\pi}{2}}{x^6} = \frac{\pi}{2x^6}$$

Исследуем сходимость эталонного интеграла:

$$\int_{1}^{+\infty} \frac{dx}{x^6}$$

Это интеграл вида $\int_1^{+\infty} \frac{dx}{x^p}$ с p=6>1, который сходится.

По предельному признаку сравнения:

$$\lim_{x\to+\infty}\frac{\frac{\arctan x}{1+x^6}}{\frac{1}{x^6}}=\lim_{x\to+\infty}\frac{x^6\arctan x}{1+x^6}=\lim_{x\to+\infty}\frac{\arctan x}{\frac{1}{x^6}+1}=\frac{\frac{\pi}{2}}{1}=\frac{\pi}{2}$$

Поскольку предел конечен и положителен, а эталонный интеграл сходится, то исходный интеграл также сходится.

КР 1. Вариант 11.

1. Вычислить площадь фигуры, ограниченной данными кривыми

$$y = \frac{\arctan 3x}{1+9x^2}, \quad y = 0, \quad x = \frac{1}{3}$$

Решение:

Функция $y=rac{\arctan 3x}{1+9x^2}$ определена на интервале $\left[0,rac{1}{3}
ight].$

На этом интервале функция неотрицательна, поэтому площадь вычисляется как:

$$S = \int_0^{\frac{1}{3}} \frac{\arctan 3x}{1 + 9x^2} \ dx$$

Используем замену переменной: пусть u=3x, тогда $du=3\ dx$, откуда $dx=\frac{du}{3}$.

При x=0: u=0 При $x=\frac{1}{3}$: u=1

$$S = \int_0^1 \frac{\arctan u}{1 + u^2} \cdot \frac{du}{3} = \frac{1}{3} \int_0^1 \frac{\arctan u}{1 + u^2} \ du$$

Для вычисления интеграла $\int rac{\arctan u}{1+u^2} du$ используем замену $t=\arctan u$, тогда $dt=rac{du}{1+u^2}$:

$$\int \frac{\arctan u}{1+u^2} \ du = \int t \ dt = \frac{t^2}{2} = \frac{(\arctan u)^2}{2}$$

Применяя пределы интегрирования:

$$\begin{split} S &= \frac{1}{3} \left[\frac{(\arctan u)^2}{2} \right]_0^1 = \frac{1}{3} \cdot \frac{1}{2} [(\arctan 1)^2 - (\arctan 0)^2] \\ &= \frac{1}{6} \left[\left(\frac{\pi}{4} \right)^2 - 0^2 \right] = \frac{1}{6} \cdot \frac{\pi^2}{16} = \frac{\pi^2}{96} \end{split}$$

Ответ: $S = \frac{\pi^2}{96}$

2. Вычислить длину дуги кривой

$$y = \frac{x^2}{2} - \frac{\ln x}{4} \quad 1 \le x \le 3$$

Решение:

Длина дуги кривой вычисляется по формуле:

$$L = \int_{a}^{b} \sqrt{1 + \left(y'\right)^2} \ dx$$

Найдем производную:

$$y' = \frac{d}{dx} \left[\frac{x^2}{2} - \frac{\ln x}{4} \right] = \frac{2x}{2} - \frac{1}{4x} = x - \frac{1}{4x}$$

Вычислим $(y')^2$:

$$(y')^2 = \left(x - \frac{1}{4x}\right)^2 = x^2 - 2 \cdot x \cdot \frac{1}{4x} + \frac{1}{16x^2} = x^2 - \frac{1}{2} + \frac{1}{16x^2}$$

Найдем подкоренное выражение:

$$1 + (y')^2 = 1 + x^2 - \frac{1}{2} + \frac{1}{16x^2} = x^2 + \frac{1}{2} + \frac{1}{16x^2}$$

Попробуем представить это как полный квадрат:

$$1 + (y')^2 = x^2 + \frac{1}{2} + \frac{1}{16x^2} = x^2 + 2 \cdot x \cdot \frac{1}{4x} + \frac{1}{16x^2} = \left(x + \frac{1}{4x}\right)^2$$

Тогда:

$$\sqrt{1 + (y')^2} = x + \frac{1}{4x}$$

Длина дуги:

$$L = \int_{1}^{3} \left(x + \frac{1}{4x} \right) dx = \left[\frac{x^{2}}{2} + \frac{1}{4} \ln x \right]_{1}^{3}$$

$$L = \left(\frac{9}{2} + \frac{1}{4} \ln 3 \right) - \left(\frac{1}{2} + \frac{1}{4} \ln 1 \right) = \frac{9}{2} - \frac{1}{2} + \frac{1}{4} \ln 3 = 4 + \frac{\ln 3}{4}$$

Ответ: $L=4+rac{\ln 3}{4}$

3. Вычислить несобственный интеграл

$$\int_{-\infty}^{1} x \cdot 3^{6x} \ dx$$

Решение:

Используем интегрирование по частям. Пусть:

$$u = x, \quad dv = 3^{6x} dx$$

$$du = dx, \quad v = \int 3^{6x} dx = \frac{3^{6x}}{6 \ln 3}$$

По формуле интегрирования по частям:

$$\int x \cdot 3^{6x} dx = x \cdot \frac{3^{6x}}{6 \ln 3} - \int \frac{3^{6x}}{6 \ln 3} dx$$

$$= \frac{x \cdot 3^{6x}}{6 \ln 3} - \frac{1}{6 \ln 3} \int 3^{6x} dx = \frac{x \cdot 3^{6x}}{6 \ln 3} - \frac{1}{6 \ln 3} \cdot \frac{3^{6x}}{6 \ln 3}$$

$$= \frac{x \cdot 3^{6x}}{6 \ln 3} - \frac{3^{6x}}{36(\ln 3)^2} = \frac{3^{6x}}{6 \ln 3} \left(x - \frac{1}{6 \ln 3}\right)$$

Вычислим несобственный интеграл:

$$\int_{-\infty}^{1} x \cdot 3^{6x} dx = \lim_{t \to -\infty} \left[\frac{3^{6x}}{6 \ln 3} \left(x - \frac{1}{6 \ln 3} \right) \right]_{t}^{1}$$
$$= \frac{3^{6}}{6 \ln 3} \left(1 - \frac{1}{6 \ln 3} \right) - \lim_{t \to -\infty} \frac{3^{6t}}{6 \ln 3} \left(t - \frac{1}{6 \ln 3} \right)$$

При $t \to -\infty$: $3^{6t} \to 0$ быстрее, чем |t| растет, поэтому предел равен 0.

$$\begin{split} &= \frac{3^6}{6 \ln 3} \bigg(1 - \frac{1}{6 \ln 3} \bigg) = \frac{729}{6 \ln 3} - \frac{729}{36 (\ln 3)^2} = \frac{729}{6 \ln 3} \bigg(1 - \frac{1}{6 \ln 3} \bigg) \\ &= \frac{729}{6 \ln 3} \cdot \frac{6 \ln 3 - 1}{6 \ln 3} = \frac{729 (6 \ln 3 - 1)}{36 (\ln 3)^2} \end{split}$$

Ответ: $\frac{729(6\ln 3 - 1)}{36(\ln 3)^2} = \frac{81(6ln3 - 1)}{4(\ln 3)^2}$

4. Исследовать на сходимость интеграл

$$\int_{1}^{+\infty} \frac{2 + \sin 3x}{4x^2 + 1} \ dx$$

Решение:

Данный интеграл является несобственным интегралом 1-го рода. Исследуем его сходимость.

Разложим интеграл на два:

$$\int_{1}^{+\infty} \frac{2 + \sin 3x}{4x^2 + 1} \ dx = \int_{1}^{+\infty} \frac{2}{4x^2 + 1} \ dx + \int_{1}^{+\infty} \frac{\sin 3x}{4x^2 + 1} \ dx$$

Исследуем первый интеграл:

$$\int_{1}^{+\infty} \frac{2}{4x^2 + 1} \ dx$$

При $x \to +\infty$: $\frac{2}{4x^2+1} \sim \frac{2}{4x^2} = \frac{1}{2x^2}$

Интеграл $\int_1^{+\infty} \frac{1}{x^2} dx$ сходится (эталонный интеграл с показателем p=2>1), следовательно, и первый интеграл сходится.

Исследуем второй интеграл:

$$\int_{1}^{+\infty} \frac{\sin 3x}{4x^2 + 1} \ dx$$

Используем признак Дирихле: если функция f(x) монотонно стремится к нулю при x
ightarrow $+\infty$, а функция g(x) имеет ограниченную первообразную, то интеграл $\int_a^{+\infty} f(x) g(x) dx$ сходится.

- $f(x)=\frac{1}{4x^2+1} \to 0$ монотонно при $x\to +\infty$ $g(x)=\sin 3x$ имеет ограниченную первообразную $G(x)=-\frac{1}{3}\cos 3x$

По признаку Дирихле второй интеграл также сходится.

Поскольку оба интеграла сходятся, исходный интеграл сходится.