Практика 10

Функции от операторов

Задание 1. Степень оператора

Постройте матрицу D оператора дифференцирования $\mathcal{D}(p) = x \frac{dp}{dx}$ в пространстве полиномов $\mathbb{R}^{\leq 3}[x]$ степени не выше 5. Базис $\{1, x, x^2, x^3\}$. Используя знания прозводных, постройте оператор \mathcal{D}^3 . Найдите его матрицу путем возведения матрицы D в 3-ю степень.

Задание 2. Предел оператора

Пусть оператор φ действует на базис $\{e_1, e_2, e_3, e_4\}$ следующим образом

$$\varphi(e_k) = \frac{1}{k}e_k$$

Постройте матрицу этого оператора в данном базисе. Найдите $\lim_{k\to\infty}A_{\varphi}^k.$

Задание 3. Матричная экспонента

Пусть матрицы A представляют собой матрицы операторов:

(a)

$$A = \begin{pmatrix} 3 & 1 & 0 \\ 1 & 3 & 0 \\ 2 & 1 & 5 \end{pmatrix}$$

(б)

$$A = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 3 & -1 \\ 0 & -1 & 3 \end{pmatrix}$$

- Найдите диагональные представления этих матриц и собственный базис.
- Постройте матричную экспоненту e^A в базисе из собственных векторов.
- При помощи преобразования базиса, найдите матричную экспоненту в исходном базисе.

Задание 4. Функции жордановых форм

Пусть оператор задан матрицей в жордановой нормальной форме:

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

Найдите $\ln A$.

Задание 5. Функции жордановых форм

Пусть оператор задан матрицей в жордановой нормальной форме:

$$A = \begin{pmatrix} 4 & 1 & 0 & 0 \\ 0 & 4 & 1 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{pmatrix}$$

Найдите $A^{\frac{1}{2}}$.

Задание 6. Функции произвольного оператора

Пусть оператор задан матрицей в жордановой нормальной форме:

$$A = \begin{pmatrix} 3 & -1 & 1 & -7 \\ 9 & -3 & -7 & -1 \\ 0 & 0 & 4 & -8 \\ 0 & 0 & 2 & -4 \end{pmatrix}$$

Найдите матричную экспоненту e^A в жордановом и исходном базисе.