Диагонализация квадратичных форм II

Содержание

§1	Методы Лагранжа и Якоби	1
§2	Метод Якоби диагонализации квадратичных форм	2
83	Олновременная диагонализация двух квадратичных форм	4

§1. Методы Лагранжа и Якоби

Рассмотрим ряд методов, которые могут использоваться для нахождения диагональных представлений квадратичных форм. Пусть $V(\mathbb{K})$ — конечномерное линейное пространство над полем \mathbb{K} размерность которого $\dim_{\mathbb{K}} V = n$.

Теорема 1.1. Любая квадратичная форма q(v), заданная в линейном пространстве V, c помощью невырожденного преобразования координат может быть приведена κ каноническому виду.

Доказательство. Доказательство произведем при помощи **метода Лагранжа**, основная идея которого заключается в последовательно приведении квадратного трехчлена до полного квадрата.

Если q(v)=0 для $\forall v\in V$, то квадратичная (нулевая) форма уже представлена в каноническом виде по определению. Поэтому все дальнейшие рассуждения будем проводить в предположении, что она ненулевая, то есть $\exists v\in V, q(v)\neq 0$. В частности, из этого следует, что существуют ненулевые коэффициенты квадратичной формы в некотором базисе $\{e_i\}_{i=1}^n$.

Здесь возможно два случая. Первый заключается в том, что существует коэффициент $a_{ii} \neq 0$. Тогда, не теряя общности можем предположить, что это коэффициент a_{11} для удобства. Этого всегда можно достичь простой перестановкой базисных элементов. Основная часть метода будет применяться именно в этом случае, но сначала рассмотрим второй случай — когда все $a_{ii} \neq 0$. Этому соответствует самый простой случай, когда

$$q(v) = v^1 v^2,$$

где верхний индекс означает нумерацию координаты, а не степень. Тогда мы можем совершить преобразование вида

$$v^1 = \widetilde{v}^1 - \widetilde{v}^2$$
, $v^2 = \widetilde{v}^1 + \widetilde{v}^2$, $v^i = \widetilde{v}^i$, $i = 3, ..., n$

которое очевидно является невырожденным и приводит квадратичную форму к виду

$$q(x) = (\tilde{v}^1 - \tilde{v}^2)(\tilde{v}^1 + \tilde{v}^2) = (\tilde{v}^1)^2 - (\tilde{v}^2)^2,$$

к которой мы можем применять уже дальнейшие преобразования. Далее будем считать, что до исчерпания координат и завершения метода, всегда найдется слагаемое, содержащее квадрат следующей по номеру координаты.

Пусть квадратичная форма в заданном базисе имеет вид

$$q(v) = \sum_{i=1}^{n} \sum_{i=1}^{n} a_{ij} v^{i} v^{j}, \qquad a_{11} \neq 0$$

Сгруппируем слагаемые таким образом, что в первой выделенной группе будут все слагаемые, содержащие **ведущую координату** v^1 , а под знаком суммы соберем все остальные слагаемые:

$$q(v) = a_{11}(v^1)^2 + 2a_{12}v^1v^2 + \ldots + 2a_{1n}v^1v^n + \sum a_{ij}v^iv^j = \to$$

и преобразуем выделенную группу, вычленяя полный квадрат данного выражения.

$$\Rightarrow = a_{11} \left(v^1 + \frac{a_{12}}{a_{11}} v^2 + \dots + \frac{a_{1n}}{a_{11}} v^n \right)^2 - \frac{a_{12}^2}{a_{11}} (v^2)^2 - \dots - \frac{a_{1n}^2}{a_{11}} (v^n)^2 - \\ - 2 \frac{a_{12} a_{13}}{a_{11}} (v^2) (v^3) - \dots - 2 \frac{a_{1,n-1} a_{1n}}{a_{11}} v^{n-1} v^n + \sum_{i=1}^n a_{ij} v^i v^j = \\ = a_{11} \left(v^1 + \frac{a_{12}}{a_{11}} v^2 + \dots + \frac{a_{1n}}{a_{11}} v^n \right)^2 + \sum_{i=1}^n a_{ij} v^i v^j$$

В этом выражении все появившиеся слагаемые были "свернуты" под знак суммы. Теперь, рассматривая часть квадратичной формы, которая оказалась под этим знаком суммы \sum' , мы можем снова применить выделения полного квадрата, но уже относительно координаты v^2 . Последовательно выполняя эти действия к каждой из координат, имеем возможность получить диагональный вид квадратичной формы, полученный при помощи преобразования

$$\begin{cases} \widetilde{v}^1 = v^1 + \frac{a_{12}}{a_{11}}v^2 + \dots + \frac{a_{1n}}{a_{11}}v^n \\ \widetilde{v}^2 = v^2 + \frac{a_{23}}{a_{22}}v^3 + \dots + \frac{a_{2n}}{a_{22}}v^n \\ \widetilde{v}^k = v^k + \sum_{i=k}^n \frac{a_{ki}}{a_{kk}}v^i \\ \widetilde{v}^n = v^n \end{cases}$$

§2. Метод Якоби диагонализации квадратичных форм

Теорема 2.1. Пусть квадратичная форма q(v) в базисе $\{e_1, e_2, \dots, e_n\}$ имеет матрицу $A_q = (a_{ij}), u$ все её **главные миноры**:

$$\Delta_1 = a_{11}, \quad \Delta_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}, \quad \dots, \quad \Delta_{n-1} \neq 0.$$

Тогда существует **единственное** верхнетреугольное преобразование базиса $\{e_i\} \to \{g_i\}$, приводящее q(v) к каноническому виду:

$$q(v) = \Delta_1(v^1)^2 + \frac{\Delta_2}{\Delta_1}(v^2)^2 + \ldots + \frac{\Delta_n}{\Delta_{n-1}}(v^n)^2.$$

Доказательство. Пусть новые векторы g_j задаются верхнетреугольным преобразованием:

$$\begin{cases} g_1 = e_1, \\ g_2 = s_{21}e_1 + e_2, \\ g_3 = s_{31}e_1 + s_{32}e_2 + e_3, \\ \vdots \\ g_n = s_{n1}e_1 + s_{n2}e_2 + \dots + e_n, \end{cases}$$

Очевидно, что данное преобразование будет невырожденным. Следовательно набор векторов $\{g_j\}_{j=1}^n$ является базисом. Для связи этого преобразования с квадратичной формой, предположим, что коэффициенты s_{ji} (j>i) находятся из условия диагональности q(v).

Это условие обеспечивается следующими рассуждениями. Пусть b(u,v) — билинейная форма, которая является полярной к данной билинейной форме. Очевидно, что для диагонального вида квадратичной формы q(v) необходимо, чтобы и полярная билинейная форма была диагональной. Для канонического вида необходимо:

$$b(g_j, e_i) = 0$$
 при $i < j$,

тогда будет выполняться и $b(g_j,g_i)=0$ для i< j, т.к. каждый из g_k выражается через векторы из $\{e_i\}_{i=1}^k.$

Для каждого $j\geqslant 2$, подставляя $g_j=\sum_{k=1}^{j-1}s_{jk}e_k+e_j$, получаем систему уравнений.

$$\sum_{k=1}^{j-1} s_{jk} a_{ki} + a_{ji} = 0 \quad (i = 1, 2, \dots, j-1),$$

где $a_{ki} = b(e_k, e_i)$.

Проанализируем полученную систему относительно неизвестных $\{s_{jk}\}$. Матрица системы совпадает с главным минором Δ_{j-1} . Из условия $\Delta_{j-1} \neq 0$ и теоремы Крамера следует единственность решения:

$$s_{jk} = (-1)^{k+j} \frac{\Delta_k^{(j)}}{\Delta_{j-1}},$$

где $\Delta_k^{(j)}$ — минор с заменой k-го столбца на $(a_{j1},\ldots,a_{j,j-1})^T$, а множитель (-1) возникает из-за того, что в "классических" формулах Крамера столбец свободных членов находится в правой части системы.

Перейдем к вычислению диагональных коэффициентов. Из условий ортогональности $q(g_i,g_i)=0$ при i< j следует:

$$\lambda_j = q(g_j) = b(g_j, g_j) = b(e_j, g_j) = b\left(e_j, \sum_{k=1}^{j-1} s_{jk} e_k + e_j\right) = \sum_{k=1}^{j-1} s_{jk} a_{jk} + a_{jj}.$$

Подставляя выражение для s_{jk} :

$$\lambda_j = \sum_{k=1}^{j-1} \left[(-1)^{k+j} \frac{\Delta_k^{(j)}}{\Delta_{j-1}} \right] a_{jk} + a_{jj}.$$

Числитель этого выражения совпадает с разложением определителя Δ_j по j-й строке (теорема Лапласа):

$$\Delta_j = \sum_{k=1}^{j} (-1)^{j+k} a_{jk} \Delta_k^{(j)}.$$

Следовательно:

$$\lambda_j = \frac{\Delta_j}{\Delta_{j-1}}.$$

Ненулевые миноры Δ_j гарантируют единственность s_{ji} . Следовательно, преобразование $\{e_i\} \to \{g_i\}$ единственно.

Замечание 2.1. Если $\Delta_j = 0$ для некоторого j, метод Якоби неприменим. В этом случае используется метод Лагранжа.

§3. Одновременная диагонализация двух квадратичных форм

Теорема 3.1. Пусть $q_1(v)$ и $q_2(v)$ – две квадратичные формы в линейном пространстве V размерности n, причём $q_1(v)$ невырождена (т.е. $\det A \neq 0$, где A – матрица $q_1(v)$). Тогда существует базис $\{g_1, g_2, \ldots, g_n\}$, в котором обе формы диагональны:

$$\begin{cases} q_1(v) = \lambda_1(v^1)^2 + \lambda_2(v^2)^2 + \dots + \lambda_n(v^n)^2, \\ q_2(v) = \mu_1(v^1)^2 + \mu_2(v^2)^2 + \dots + \mu_n(v^n)^2, \end{cases}$$

 $e \partial e \ \lambda_i, \mu_i \in \mathbb{R}.$

Доказательство. Построим доказательство конструктивно, приведя алгоритм нахождения нужного преобразования.

(a) Диагонализация $q_1(v)$:

Приведем квадратичную форму $q_1(v)$ к диагональному виду с помощью ортогональных преобразований, например при помощи спектрального анализа присоединенного оператора к этой квадратичной форме. Получим базис $\{f_i\}$, в котором форма имеет матрицу

$$A = \operatorname{diag}(\lambda_1, \dots, \lambda_n).$$

(б) Преобразование $q_2(v)$:

Вычислим матрицу B формы $q_2(v)$ в базисе $\{f_i\}$:

$$B = T_1^T B' T_1,$$

где T_1 — матрица перехода из $\{e_i\}$ в $\{f_i\}$, B' — исходная матрица $q_2(v)$. Еще раз обратим внимание, что преобразование T является ортогональным, т.к. основано на собственных векторах присоединенного оператора.

(в) Диагонализация $q_2(v)$:

Вновь применим спектральную теорию для диагонализации второй квадратичной формы, находя ортогональное преобразование из $\{f_i\}$ в $\{g_i\}$, которое позволит преобразовать квадратичную форму $q_2(v)$ в диагональный вид

$$B \mapsto \operatorname{diag}(\mu_1, \dots, \mu_n)$$

При этом, в связи с тем, что преобразование T_2 является ортогональным, оно не изменит диагональный вид матрицы квадратичной формы $q_1(v)$, а следовательно композиция ортогональных преобразований $T_2 \circ T_1$ и есть искомое преобразование.

Замечание 3.1. Если невырожденная квадратичная форма является положительно определенной, то тогда можно интерпретиировать полярную к ней билинейную форму как матрицу Грама скалярного произведения. В этом случае, исходный базис может быть ортогонализован процессом Грама-Шмидта, а для поиска диагонального представления второй квадратичной формы также использовать полученный базис и имеющееся "скалярное произведение".