Линейные отображения

Предыдущие темы были посвящены рассмотрению отображений, обладающих свойствами линейности по аргументам, результатом которых был скаляр из некоторого поля. Однако вместе с тем, существует еще один важный тип отображений, определяющий сопоставление элементов двух линейных пространств. Как мы увидим далее, линейные формы являются частным случаем этого семейства отображений.

§1. Основные понятия

Пусть $V(\mathbb{K})$ и $W(\mathbb{K})$ — линейные пространства над полем \mathbb{K} .

Определение 1.1. Отображение $\varphi:V\to W$ линейного пространства V в линейное пространство W называется линейным, если $\forall x,x_1,x_2\in V, \forall \alpha\in\mathbb{K}$ выполяются следующие свойства

$$\varphi(x_1 + x_2) = \varphi(x_1) + \varphi(x_2), \qquad \varphi(\alpha x) = \alpha \varphi(x)$$

Замечание 1.1. Множество линейных отображений действующих их $V(\mathbb{K})$ в $W(\mathbb{K})$ будем обозначать $\operatorname{Hom}_{\mathbb{K}}(V,W)$.

Пример 1.1. Примеры линейных отображений:

(а) Нулевое отображение:

$$\mathcal{O}: V \to W \qquad \mathcal{O}x = 0_W, \qquad \forall x \in V$$

(б) Тождественное отображение:

$$\mathcal{I}: V \to V \qquad \mathcal{I}x = x, \qquad \forall x \in V$$

(в) Растяжение:

$$\varphi \colon V \to V \qquad \varphi x = \lambda x, \qquad \forall x \in V$$

(г) Пусть V разбивается в прямую сумму подпространств $V = V_1 \oplus V_2$. Тогда проектором будем называть отображение:

$$\mathcal{P}_{V_1}^{\|V_2} \colon V \to V, \qquad \mathcal{P}_{V_1}^{\|V_2} x = x_1, \qquad \forall x_1 \in V_1$$

(д) Пусть $\mathbb{R}^{\leqslant n}[t]$ — пространство полиномов степени не выше n, а символом $\mathcal D$ будем обозначать дифференцирование

$$\mathcal{D}p = \frac{dp}{dt}, \quad \forall p \in \mathbb{R}^{\leqslant n}[t]$$

(e) Пусть $M_n(\mathbb{K})$ — пространство квадратных матриц n-го порядка, на котором введены отображения симметризации Sym и антисимметризации Asym

$$Sym(A) = \frac{1}{2} (A + A^{T}) \qquad Asym(A) = \frac{1}{2} (A - A^{T})$$

Замечание 1.2. Нередко при записи символа линейного отображения и его аргумента опускаются скобки как в некоторых примерах выше. Иными словами, записи $\varphi(x)$ и φx считаются эквивалентными.

§2. Матрица отображения

Пусть $\varphi:V\to W$, причем $\dim_{\mathbb{K}}V=n$, $\dim_{\mathbb{K}}W=m$, а также $\{e_i\}_{i=1}^n$ и $\{g_j\}_{j=1}^m$ — базисы пространств V и W соответственно.

Определение 2.1. Матрицей линейного отображения φ в паре базисов $\{e_i\}_{i=1}^n$ и $\{g_j\}_{j=1}^m$ называется матрица $A_{\varphi}=\{\alpha_i^j\}$, в столбцах которой находятся координаты образов векторов базиса $\{e_i\}$ в базисе $\{g_j\}$

$$\varphi e_i = \sum_{i=1}^m \alpha_i^j g_j$$

Пример 2.1. (а) Нулевое отображение

$$\mathcal{O} \to \Theta = \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 \end{pmatrix}$$

(б) Тождественное отображение

$$\mathcal{I} \to E = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

(в) Матрица проектора на V_1 , если $V=V_1\oplus V_2$, найденная в базисе, согласованном с обоими подпространствами

$$\mathcal{P}_{V_1}^{\parallel V_2} \to P_1 = \begin{pmatrix} E & 0\\ 0 & \Theta \end{pmatrix}$$

так как

$$\mathcal{P}_{V_1}^{\parallel V_2} x = x, \qquad \mathcal{P}_{V_1}^{\parallel V_2} x = 0, \qquad \forall x \in V_1$$

Теорема 2.1. Задание линейного отображения φ эквивалентно заданию его матрицы A_{φ} в фиксированной паре базисов.

Доказательство. Пусть $\varphi \in \operatorname{Hom}_{\mathbb{K}}(V,W)$ — линейное отображение и $\{e_i\}_{i=1}^n$, $\{g_j\}_{j=1}^m$ — базисы пространств V и W соответственно. Рассмотрим элементы $x \in V$ и $y \in W$ такие, что

$$x = \sum_{i=1}^{n} \xi^{i} e_{i}, \qquad y = \sum_{j=1}^{m} \eta^{j} g_{j}, \qquad \varphi(x) = y$$

Действие отображения на элемент x можно представить как

$$\varphi(x) = \varphi\left(\sum_{i=1}^{n} \xi^{i} e_{i}\right) = \sum_{i=1}^{n} \xi^{i} \varphi(e_{i}) = \sum_{i=1}^{n} \xi^{i} \sum_{j=1}^{m} \alpha_{i}^{j} g_{j} = \sum_{j=1}^{m} \eta^{j} g_{j}$$

Откуда следует, что

$$\eta^j = \sum_{i=1}^n \xi^i \alpha_i^j$$

Тем самым мы обеспечили однозначность определения образа элемента, используя лишь коэффициенты матрицы оператора при условии, что сами векторы и матрица определены в одной и той же паре базисов. □

§3. Пространство линейных отображений

Рассмотрим два линейных пространства $V(\mathbb{K})$ и $W(\mathbb{K})$ и множество всех линейных отображений, которые действуют между ними. Пусть также φ, ψ — линейные отображения из V в W.

Определение 3.1. Линейные отображения φ и ψ будем считать равными, если

$$\forall x \in V \qquad \varphi(x) = \psi(x)$$

Определение 3.2. Отображение $\chi:V\to W$ называется суммой линейных отображений $\varphi,\psi:V\to W,$ если

$$\forall x \in V$$
 $\chi(x) = \varphi(x) + \psi(x)$

Лемма 3.1. Сумма $\chi = \varphi + \psi$ линейных отображений является линейным отображением.

Доказательство. Для доказательства необходимо рассмотреть линейные свойства суммы линейных отображений:

$$\chi(x_1 + x_2) = \varphi(x_1 + x_2) + \psi(x_1 + x_2) = \varphi(x_1) + \varphi(x_2) + \psi(x_1) + \psi(x_2) = = (\varphi + \psi)(x_1) + (\varphi + \psi)(x_2) = \chi(x_1) + \chi(x_2) \chi(\alpha x) = \varphi(\alpha x) + \alpha \psi(\alpha x) = \alpha \varphi(x) + \alpha \psi(x) = \alpha(\varphi + \psi)(x) = \alpha \chi(x)$$

Следствие 3.0.1. Матрица C_{χ} линейного отображения $\chi = \varphi + \psi$ определяется суммой матриц A_{φ} и B_{ψ} .

$$C_{\chi} = A_{\varphi} + B_{\psi}$$

Определение 3.3. Отображение ω называется произведением линейного отображения φ на число $\lambda \in \mathbb{K}$, если

$$\forall x \in V \qquad \omega(x) = \lambda \varphi(x)$$

Пемма 3.2. Произведение $\omega = \lambda \varphi$ линейного отображения на скаляр является линейным отображением.

Доказательство. Доказательство аналогично доказательству суммы.

Следствие 3.0.2. Матрица D_{ω} линейного отображения $\omega = \lambda \varphi$ определяется умножением матрицы A_{φ} на скаляр $\lambda \in \mathbb{K}$.

$$D_{\omega} = \lambda A_{\varphi}$$

Учитывая рассмотренные понятия равенства, определенных операций над отображениями, а также существования нулевого элемента, на множестве линейных отображений можно ввести структуру линейного пространства.

Теорема 3.1. Множество всех линейных отображений из пространства V в пространство W является линейным пространством над полем \mathbb{K} .

Доказательство. Доказательство сводится к проверке аксиом линейного пространства. \Box

Замечание 3.1. В силу того, что между отображением и его матрицей в фиксированной паре базисов пространств V и W устанавливается соответствие, которое к тому же сохраняет свойства линейности, можно утверждать, что пространство $\operatorname{Hom}_{\mathbb{K}}(X,Y)$ изоморфно матричному пространству $M_{m \times n}(\mathbb{K})$.

$$\operatorname{Hom}_{\mathbb{K}}(X,Y) \simeq M_{m \times n}(\mathbb{K})$$

Композиция линейных отображений

Пусть $\varphi\in \mathrm{Hom}_{\mathbb{K}}(V,U)$ и $\psi\in \mathrm{Hom}_{\mathbb{K}}(U,W)$ — линейные отображения между соответствующими пространствами.

Определение 3.4. Отображение $\chi:V\to W$ называется композицией линейных отображений ψ и φ , если

$$\forall x \in V: \qquad \chi(x) = (\psi \circ \varphi)(x) = \varphi(\varphi(x))$$

Пемма 3.3. Композиция $\chi = \psi \circ \varphi$ линейных отображений является линейным отображением.

Доказательство. Рассмотрим образ линейной комбинации векторов из V

$$\chi\left(\sum_{i=1}^k\alpha^ix_i\right)=(\psi\circ\varphi)\left(\sum_{i=1}^k\alpha^ix_i\right)=\psi\left(\sum_{i=1}^k\alpha^i\varphi(x_i)\right)=\sum_{i=1}^k\alpha^i\psi(\varphi(x_i))=\sum_{i=1}^k\alpha^i\chi(x_i)$$

Следствие 3.1.1. Матрица композиции линейных отображений $\chi = \psi \circ \varphi$ определяется произведением матриц B_{ψ} и A_{φ} .

$$C_{\chi} = B_{\psi} \cdot A_{\varphi}$$

§4. Преобразование базиса

Пусть $\varphi \in \text{Hom}_{\mathbf{K}}(V, W)$, а в пространствах заданы базисы:

$$V: \qquad \{e_i\}_{i=1}^n, \quad \{e'_j\}_{j=1}^n$$

$$W: \qquad \{g_k\}_{k=1}^m, \quad \{g'_l\}_{l=1}^m$$

Причем известно, что $T=\{\tau_j^i\}$ — матрица перехода из базиса $\{e\}$ в базис $\{e'\}$, а матрица $S=\{\sigma_l^k\}$ — матрица перехода из базиса $\{g\}$ в базис $\{g'\}$.

Теорема 4.1. Матрица оператора при замене базисов преобразуется как

$$A_{\varphi}' = S^{-1} A_{\varphi} T$$

Доказательство. Пусть $x \in V$ произвольный элемент пространства V, а y — образ этого элемента. Тогда в паре базисов $\{e\}$ и $\{g\}$

$$\varphi(x) = y \qquad \leftrightarrow \qquad A_{\varphi}x = y$$

В то же время можно утверждать, что в паре базисов $\{e'\}$ и $\{g'\}$ справедливо

$$\varphi(x) = y \qquad \leftrightarrow \qquad A'_{\varphi}x' = y'$$

Однако известно, что при изменении базиса соответствующим образом преобразуются координаты векторов x и y

$$x' = T^{-1}x, \qquad y' = S^{-1}y$$

Подставляя данные преобразования в матричное выражение, получаем

$$A_{\varphi}'T^{-1}x = S^{-1}y$$

Матрицы перехода всегда обратимы, следовательно можно утверждать, что

$$SA'_{\varphi}T^{-1} = A_{\varphi}$$

Или, что тоже самое

$$S^{-1}A_{\varphi}T = A'_{\varphi}$$