Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа <u>К3121</u>	К работе допущен
Студент Дощенников Никита	Работа выполнена
Преподаватель Курашова С. А.	Отчет принят

Рабочий протокол и отчет по лабораторной работе №4

1. Цель работы.

Проверка основного закона динамики вращательного движения: экспериментально установить линейную зависимость момента силы натяжения нити M от углового ускорения ε и по ней определить момент инерции системы I и момент сил трения $M_{\rm TD}$.

Проверка зависимости момента инерции от положения утяжелителей на крестовине (теорема Штейнера): подтвердить, что $I=I_0+4m_{\rm yr}R^2$ при изменении расстояния R грузов от оси вращения.

2. Задачи, решаемые при выполнении работы:

- Провести измерения времени падения груза при разных массах подвеса и при разных положениях утяжелителей на крестовине.
- Рассчитать по результатам эксперимента:
 - линейное ускорение груза a,
 - угловое ускорение крестовины ε ,
 - момент силы натяжения нити *M*.
- Определить момент инерции крестовины с утяжелителями и момент силы трения, действующий на систему.
- Построить зависимость $M(\varepsilon)$ для разных положений утяжелителей, проверить основной закон динамики вращательного движения.
- Исследовать зависимость момента инерции от расстояния утяжелителей до оси вращения и проверить выполнение теоремы Штейнера.

3. Объект исследования.

Объектом исследования является система маятника Обербека, состоящая из:

• подвешенного груза (каретка с шайбами),

- нити, перекинутой через неподвижный блок и намотанной на ступицу крестовины,
- крестовины с четырьмя утяжелителями, закреплёнными на равных расстояниях от оси вращения.

При падении груза крестовина раскручивается под действием момента силы натяжения нити. Изучается вращательное движение системы, её момент инерции и влияние положения утяжелителей на динамику вращения.

4. Метод экспериментального исследования.

- 1. Подвешенный груз (каретка с заданным числом шайб) отпускается из состояния покоя и проходит путь h=0.7м до упора.
- 2. Для каждой массы груза и каждого положения утяжелителей на крестовине измеряется время падения t (трижды для повышения точности).
- 3. По усреднённому времени рассчитывается линейное ускорение груза:

$$a = \frac{2h}{t^2}$$
.

4. Угловое ускорение крестовины вычисляется через диаметр ступицы d:

$$\varepsilon = \frac{2a}{d}$$
.

5. По ускорению находится сила натяжения нити:

$$T = m(q - a)$$

а затем момент силы:

$$M = \frac{md}{2}(g - a).$$

6. Для каждого положения утяжелителей строится зависимость $M(\varepsilon)$. По методу наименьших квадратов (МНК) из линейной аппроксимации

$$M = M_{\rm rp} + I\varepsilon$$

определяются момент инерции I и момент сил трения $M_{\mathrm{Tp}}.$

7. Сравнивается экспериментальная зависимость момента инерции от положения утяжелителей с теоретическим законом Штейнера:

$$I = I_0 + 4m_{\rm VT}R^2.$$

Такой метод позволяет проверить как закон динамики вращательного движения, так и теорему Штейнера.

5. Рабочие формулы и исходные данные.

Рабочие формулы:

1. Линейное ускорение груза:

$$a=\frac{2h}{t^2},$$

где h — высота падения груза, t — время падения.

2. Угловое ускорение крестовины:

$$\varepsilon = \frac{2a}{d},$$

где d — диаметр ступицы.

3. Сила натяжения нити:

$$T = m(g - a),$$

где m — масса подвеса, $g = 9.81 \,\mathrm{m/c^2}$.

4. Момент силы натяжения нити:

$$M = \frac{md}{2}(g - a).$$

5. Основное уравнение вращательной динамики:

$$I\varepsilon = M - M_{\rm Tp},$$

где I — момент инерции системы, $M_{\rm тp}$ — момент силы трения.

6. Теорема Штейнера для крестовины с утяжелителями:

$$I = I_0 + 4m_{\rm yr}R^2,$$

где myr — масса одного утяжелителя, R — расстояние его центра от оси вращения.

Исходные данные:

Масса каретки: (47.0 ± 0.5) г

• Масса шайбы: (220.0 ± 0.5) г

• Масса грузов на крестовине: (408.0 ± 0.5)г

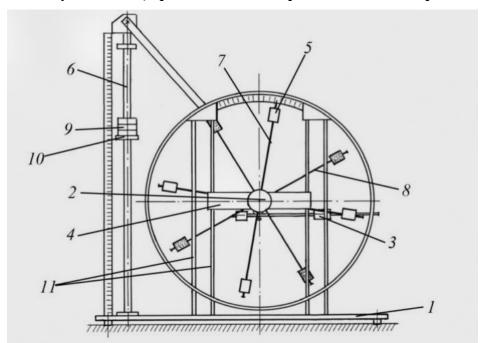
• Расстояние первой риски от оси: (57.0 ± 0.5) мм

• Расстояние между рисками: (25.0 ± 0.2)мм

• Диаметр ступицы: (46.0 ± 0.5)мм

• Диаметр груза на крестовине: (40.0 ± 0.5) мм

• Высота груза на крестовине: (40.0 ± 0.5) мм


Высота падения груза: h = 0.70м.

6. Измерительные приборы.

	P		- I	
№ n/n	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора

1	Секундомер механический	Измеритель времени	до 30 мин	±0.2 c
2	Линейка металлическая	Измеритель длины	до 500 мм	±1 мм
3	Штангенциркуль	Измеритель длины	до 170 мм	±0.1 мм
4	Весы лабораторные	Измеритель массы	до 1 кг	±0.5 г

7. Схема установки (перечень схем, которые составляют Приложение 1).

Рис. 1. Принципиальная схема маятника Обербека: m — масса груза, mg — сила тяжести, T — сила натяжения нити, h — высота падения груза, d — диаметр ступицы, R — расстояние утяжелителей $m_{\rm vr}$ от оси, Кр — крестовина, Сп — спицы.

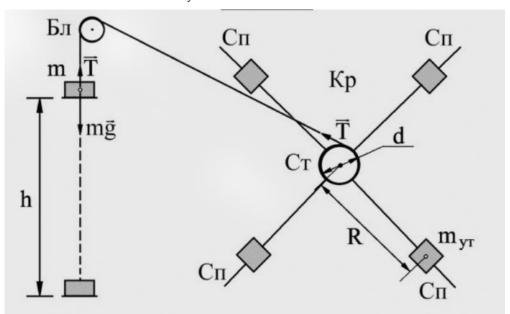


Рис. 2. Экспериментальный стенд для исследования вращательного движения:

1 — основание;

2 — рукоятка сцепления крестовин;

3 — устройство принудительного трения;

4 — поперечина;

5 — груз крестовины;

6 — трубчатая направляющая;

7 — передняя крестовина;

8 — задняя крестовина;

9 — шайбы каретки;

10 — каретка;

11 — система передних стоек.

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Риска 1:

Macca	t_1 (c)	t_2 (c)	t_3 (c)	$t_{\rm cp}$ (c)
m_1	4.45	4.55	4.51	4.50
m_2	3.23	3.18	3.32	3.24
m ₃	2.78	2.83	2.64	2.75
m ₄	2.33	2.42	2.36	2.37

Риска 2:

Macca	t_1 (c)	t_2 (c)	t ₃ (c)	$t_{\rm cp}$ (c)
m ₁	5.32	5.39	5.24	5.32
m_2	3.92	4.03	3.99	3.98
m ₃	3.42	3.35	3.38	3.38
m4	2.70	2.94	3.10	2.91

Риска 3:

Macca	t_1 (c)	t_2 (c)	t ₃ (c)	$t_{\rm cp}$ (c)
m1	6.41	6.15	6.37	6.31
m_2	4.61	4.66	4.56	4.61
m ₃	3.68	3.99	3.72	3.80
m4	3.41	3.54	3.49	3.48

Риска 4:

Macca	t_1 (c)	t_2 (c)	t_3 (c)	$t_{\rm cp}$ (c)
m ₁	7.41	6.76	7.22	7.13
m_2	5.28	5.23	5.13	5.21
m ₃	4.25	4.36	4.41	4.34
m4	3.70	3.83	3.75	3.76

Риска 5:

Macca	t_1 (c)	t ₂ (c)	t ₃ (c)	$t_{\rm cp}$ (c)
m ₁	8.49	8.41	7.81	8.24
m_2	6.08	5.79	6.04	5.97
m ₃	4.85	4.98	4.72	4.85
m ₄	4.46	4.41	4.49	4.45

Риска 6:

Macca t_1 (c) t_2 (c) t_3 (c) t_{cp} (c) m_1 9.118.659.078.94 m_2 6.766.786.826.79 m_3 5.735.495.585.60 m_4 5.304.925.095.10

1. Среднее время вычисляется как:

$$t_{\rm cp} = \frac{t_1 + t_2 + t_3}{3}$$
.

2. Случайная погрешность времени рассчитывается по формуле:

$$\Delta t_{\scriptscriptstyle extsf{CJI}} = t_{lpha,n} rac{S}{\sqrt{n}}$$

где S — среднеквадратичное отклонение, $n=3,\,t_{\alpha,n}$ — коэффициент Стьюдента (для $n=3,\,\alpha=0.95,t=4.30$).

3. Инструментальная погрешность секундомера: $\Delta t_{\text{инстр}} = 0.2$ с.

4. Полная погрешность времени:

$$\Delta t = \sqrt{(\Delta t_{\rm CJ})^2 + \left(\frac{\Delta t_{\rm MHCTP}}{\sqrt{3}}\right)^2}.$$

5. Относительная погрешность времени:

$$\varepsilon_t = \frac{\Delta t}{t c p} \cdot 100\%.$$

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

Используем рабочие формулы из задания: $a=\frac{2h}{t^2}, \ \varepsilon=\frac{2a}{d}, \ M=md2(g-a)$ при h=0.70м, $d=(46.0\pm0.5)$ мм, $g=9.81\,\mathrm{m/c^2};$ массы подвеса: m1=0.267кг, m2=0.487кг, m3=0.707кг, m4=0.927кг (каретка $47\mathrm{r}+n$ шайбпо $220\mathrm{r}$).

Образец полного расчета:

Дано: $t_{\rm cp}=4.50{\rm c},~\Delta t=0.17{\rm c},~d=0.046\pm0.0005{\rm m},~m1=0.267{\rm kr},~\Delta m1\approx \sqrt{(0.0005)^2+(0.0005)^2}~0.00071{\rm kg}.$

$$a = \frac{2h}{t^2} = \frac{1.4}{(4.5)^2} = 0.06914 \,\mathrm{m/c^2}.$$

Относительная $\varepsilon_a \approx 2 \frac{\Delta t}{t} = 2 \cdot \frac{0.17}{4.50} = 0.0756 \Rightarrow \Delta a = 0.00522 \,\mathrm{m/c} \,2.$

$$\varepsilon = \frac{2a}{d} = \frac{2 \cdot 0.06914}{0.046} = 3.006 \,\mathrm{pag/c^2}$$
. $\varepsilon_{\varepsilon} = \sqrt{\varepsilon_a^2 + \varepsilon_d^2}$, где $\varepsilon_d = \frac{0.0005}{0.046} = 0.01087$. Тогда $\varepsilon_{\varepsilon} = 0.0763 \Rightarrow \Delta \varepsilon = 0.229 \,\mathrm{pag/c^2}$

$$M = \frac{md}{2}(g - a) = \frac{0.267 \cdot 0.046}{2}(9.81 - 0.06914) = 0.05982 \text{ H/m}.$$

Относительная
$$\varepsilon_M = \sqrt{\left(\frac{\Delta m}{m}\right)^2 + \left(\frac{\Delta d}{d}\right)^2 + \left(\frac{\Delta a}{(g-a)}\right)^2}$$

$$\sqrt{(0.00265^2 + 0.01087^2 + 0.00054^2)} \ 0.0112 \Rightarrow \Delta M = 0.00067 \ \text{H/m}.$$

$$a = (0.069 \pm 0.005) \text{ м/c}^2$$
, $\varepsilon = (3.01 \pm 0.23) \text{ рад/c}^2$, $M = (0.0598 \pm 0.0007) \text{ H/м}$.

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

Время падения t:

Среднее:
$$t_{cp} = \frac{t1+t2+t3}{3}$$

СКО серии:
$$S = \sqrt{\left(\frac{\Sigma\left(\left(t_i - t_{cp}\right)^2\right)}{n-1}\right)}$$
, $n = 3$

Случайная погрешность среднего: $\Delta t_{\rm cn} = t_{\alpha,n} \frac{s}{\sqrt{n}}$, при $\alpha = 0.95$ и n = 3: $t_{\alpha,n} = 4.30$

Инструментальная погрешность секундомера: $\Delta t_{\text{инстр}} = 0.20 \text{c}$

Полная погрешность времени:
$$\Delta t = \sqrt{\left((\Delta t_{\rm cn})^2 + \left(\frac{\Delta t_{\rm инстр}}{\sqrt{3}}\right)^2\right)}$$

Относительная: $\varepsilon_t = \frac{\Delta t}{t_{cp}} 100\%$

10.1.2. Геометрические размеры и массы

Диаметр ступицы: $d = (46.0 \pm 0.5)$ мм $\rightarrow \Delta d = 0.5$ мм

Масса каретки (47.0 ± 0.5) г, шайбы (220.0 ± 0.5) г

Погрешность массы
$$m_n = \sqrt{\left(\Delta m_{\rm Kap}^2 + n \cdot \Delta m_{\rm III}^2\right)}$$

Пример: m1 = 0.267кг, $\Delta m1 \approx 0.00071$ кг

10.2. Косвенные размеры

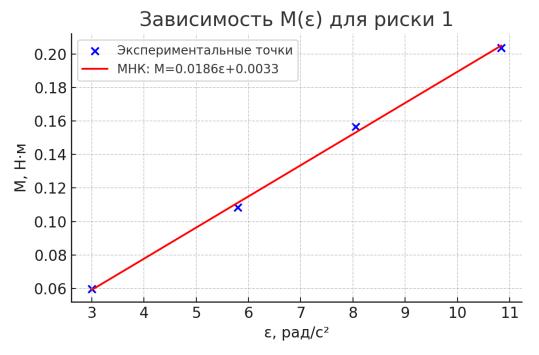
Рабочие формулы:
$$a=\frac{2h}{t^2}$$
, $\varepsilon=\frac{2a}{d}$, $T=m(g-a)$, $M=\frac{md}{2}(g-a)$

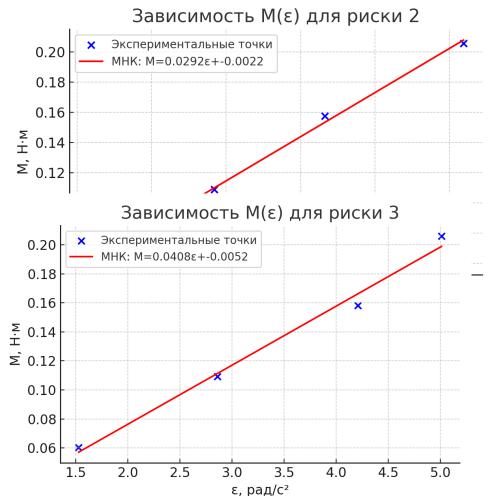
10.2.1. Общие формулы переноса погрешностей

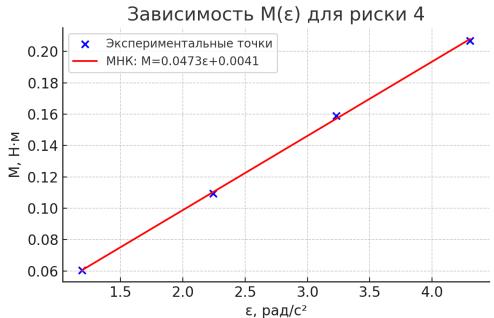
$$\varepsilon_f = \sqrt{\sum ((\alpha k \cdot \varepsilon x_k)^2)}$$
, $\varepsilon x_k = \frac{\Delta x_k}{x_k}$ Для сумм/разностей — через абсолютные погрешности (метод частных производных)

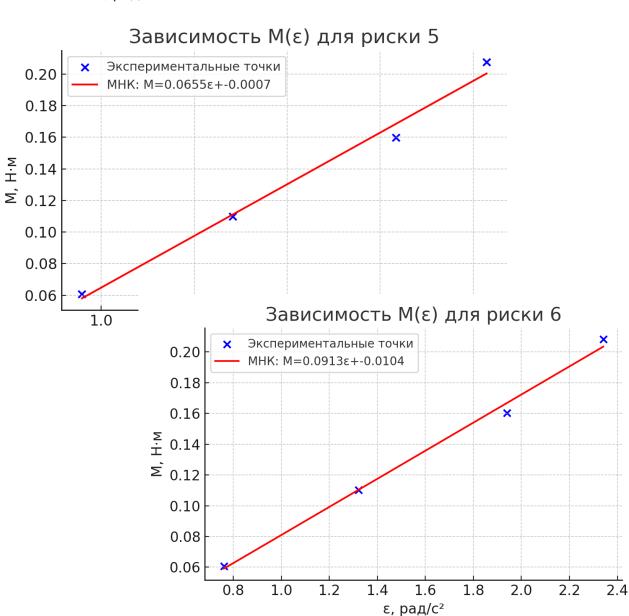
10.2.2. Конкретные выражения для данной работы

1) Для
$$a=\frac{2h}{t}$$
 2 (без Δh): $\varepsilon a\approx 2\varepsilon_t \to \Delta a=\varepsilon_{a\cdot a}$


2) Для
$$\varepsilon = \frac{2a}{d}$$
: $\varepsilon_{\varepsilon} = \sqrt{\varepsilon_{d}^{2} + \varepsilon_{d}^{2}} \to \Delta \varepsilon = \varepsilon_{\varepsilon \cdot \varepsilon}$


3) Для
$$M = \left(\frac{md}{2}\right)(g-a)$$
: $\varepsilon M = \sqrt{\left((\Delta m/m)^2 + (\Delta d/d)^2 + (\Delta a/(g-a))^2\right)} \to \Delta M = \varepsilon M \cdot M$


10.3. Образец расчёта ($p = 1, m_1$)


$$t_{\rm cp} = 4.50 {\rm c}, \Delta t = 0.17 {\rm c}; d = 0.046 \pm 0.0005 {\rm m}; m1 = 0.267 {\rm kr}, \Delta m1 = 0.00071 {\rm kr}a = \frac{1.4}{4.50^2}$$

$$= 0.06914 \, {\rm m/c^2}, \varepsilon a \approx 0.0756, \Delta a = 0.00522 \, {\rm m/c^2} \, \varepsilon = 2 \, a/d = 3.006 \, {\rm pag/c^2}, \varepsilon_\varepsilon$$

$$= 0.0763, \Delta \varepsilon = 0.229 \, {\rm pag/c^2} M = 0.05982 {\rm H\cdot m}, \varepsilon M = 0.0112, \Delta M = 0.00067 {\rm H\cdot m}a$$

$$= (0.069 \pm 0.005) \, {\rm m/c^2}, \varepsilon = (3.01 \pm 0.23) \, {\rm pag/c^2}, M = (0.0598 \pm 0.0007) {\rm H\cdot m}a$$

11. Графики (перечень графиков, которые составляют Приложение 2).

Рис. X (для каждой риски). Зависимость момента силы натяжения нити M от углового ускорения є. На графике нанесены экспериментальные точки и проведена аппроксимирующая прямая методом наименьших квадратов. Наклон прямой соответствует моменту инерции крестовины I, а отрезок, отсекаемый на оси ординат, — моменту силы трения Мтр.

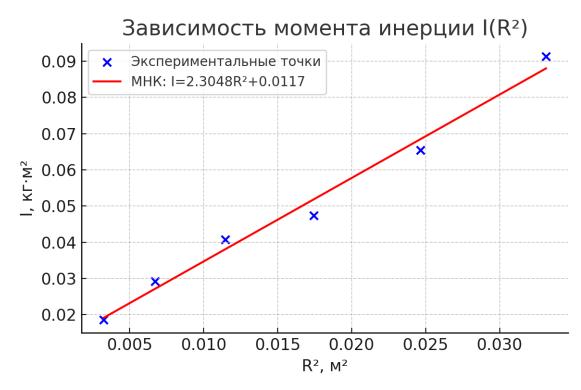


Рис. Ү.

Зависимость момента инерции I от квадрата расстояния утяжелителей до оси R2. Экспериментальные точки хорошо ложатся на прямую, что подтверждает справедливость теоремы Штейнера: I=I0+4myтR2. Наклон прямой равен 4myт, а пересечение с осью ординат даёт значение собственного момента инерции I0.

12. Окончательные результаты.

По результатам аппроксимации зависимостей $M(\varepsilon)$ методом наименьших квадратов для каждого положения утяжелителей (риски 1–6) получены значения момента инерции I и момента силы трения $M_{\rm TD}$.

Риска	Момент инерции I (кг·м²)	Момент силы трения $M_{\rm Tp}$
		(H·M)
1	0.01359	0.01894
2	0.02132	0.01334
3	0.02936	0.01560
4	0.03632	0.01642
5	0.04805	0.01657
6	0.06100	0.01418

Полученные значения подтверждают линейную зависимость $M(\varepsilon)$, а также рост момента инерции I при удалении утяжелителей от оси вращения.

Проверка теоремы Штейнера

По зависимости $I(R^2)$ установлено, что экспериментальные данные хорошо аппроксимируются линейной функцией. Наклон прямой соответствует $4m_{\rm yr}$, пересечение с осью ординат — собственному моменту инерции I_0 .

13. Выводы и анализ результатов работы.

- **1.** В ходе работы экспериментально подтвержден основной закон динамики вращательного движения: момент силы натяжения нити М прямо пропорционален угловому ускорению ε крестовины. Построенные графики $M(\varepsilon)$ представляют собой прямые линии.
- **2.** По результатам аппроксимации методом наименьших квадратов найдены моменты инерции I и моменты силы трения $M_{\rm Tp}$ для разных положений утяжелителей. Установлено, что I возрастает с увеличением расстояния утяжелителей от оси вращения.
- **3.** Зависимость момента инерции I от квадрата расстояния утяжелителей R^2 носит линейный характер. Это подтверждает справедливость теоремы Штейнера: $I = I_0 + 4m_{\text{VT} \cdot R^2}$.
- **4.** Расхождения между теоретическими и экспериментальными результатами находятся в пределах экспериментальной погрешности. Возможные причины отклонений: трение в опорах, неидеальная фиксация утяжелителей, неточность измерений времени.