Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа<u>К3121</u> К работе допущен

Студент Дощеннников Никита Работа выполнена

Преподаватель Курашова С.А.

Отчет принят

Рабочий протокол и отчет по лабораторной работе №7

1. Цель работы.

Определить момент инерции маятника Максвелла относительно оси вращения на основе законов равноускоренного движения по результатам прямых измерений высоты подъёма и времени спуска.

Расчёт выполнять по выражениям:

$$I = m \cdot r^2 \cdot \left(\frac{g \cdot t^2}{2 \cdot h} - 1\right)$$

и уточнённой формуле с учётом потерь энергии на трение:

$$I = m \cdot r^2 \cdot \left(\frac{g \cdot t^2}{h} \cdot \frac{h_1}{h + h_1} - 1 \right)$$

2. Задачи, решаемые при выполнении работы.

- 1. Ознакомиться с устройством и принципом действия маятника Максвелла, подготовить установку к проведению эксперимента.
- **2.** Провести серию прямых измерений: определить высоту падения груза h, высоту подъёма h_1 и время спуска t.
- **3.** По результатам измерений вычислить момент инерции системы I по основной формуле и по уточнённой формуле с учётом потерь энергии.
- **4.** Сравнить значения I, полученные различными методами, и оценить вклад сил трения в расхождения результатов.
- **5.** Сопоставить экспериментальные значения с табличными или расчётными и сделать выводы о достоверности опыта.

3. Объект исследования.

Объектом исследования является маятник Максвелла — механическая система, состоящая из диска (или катушки) с осью, на которую намотана нить. При отпускании диск совершает поступательное и вращательное движение одновременно: нить постепенно разматывается, диск равномерно ускоряется при падении, а затем под действием накопленной энергии поднимается

вверх.

Маятник Максвелла позволяет экспериментально определить момент инерции системы относительно оси вращения на основе измерений времени и высоты движения груза.

4. Метод экспериментального исследования.

Эксперимент основан на наблюдении за равноускоренным движением маятника Максвелла. С диска, закреплённого на оси, наматывается нить, к концам которой прикреплён груз. При отпускании система начинает двигаться: диск раскручивается и одновременно опускается вниз. После достижения нижней точки, за счёт запаса кинетической энергии, диск поднимается вверх.

В ходе эксперимента производятся прямые измерения: — высота падения h; — высота последующего подъёма h_1 ; — время движения t.

На основе полученных данных рассчитывается момент инерции маятника по двум формулам: 1) без учёта потерь энергии; 2) с учётом потерь энергии на трение и сопротивление воздуха.

Таким образом, методика позволяет оценить влияние диссипативных сил и сопоставить экспериментальные значения момента инерции с теоретическими.

5. Рабочие формулы и исходные данные.

5.1 Рабочие формулы.

Момент инерции маятника Максвелла определяется по формулам:

$$I = m \cdot r^2 \cdot \frac{g \cdot t^2}{2 \cdot h} - 1$$

Уточнённая формула с учётом потерь энергии на трение:

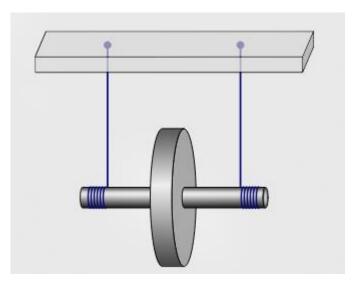
$$I = m \cdot r^2 \cdot \frac{g \cdot t^2}{h} \cdot \frac{h_1}{h + h_1} - 1$$

5.2 Исходные данные.

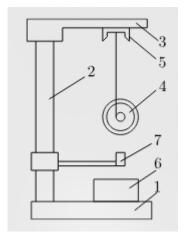
Масса маятника: $m = (0.283 \pm 0.001)$ кг

Радиус оси вращения: $r = (0.004 \pm 0.00005)$ м

Высота падения: $h = (0.280 \pm 0.001)$ м Высота подъёма: $h_1 = (0.255 \pm 0.001)$ м Время движения: $t = (1.695 \pm 0.030)$ с


Ускорение свободного падения: $g = 9.81 \,\text{м/c}^2$

6. Измерительные приборы.


№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Секундомер	Измеряет время	0–30 мин	±0.2 c
2	Линейка металлическая	Измеряет длину	0-500 мм	±1 мм

3	Штангенциркуль	Измеряет длину	0–170 мм	±0.1 мм
4	Весы лабораторные	Измеряет массу	0–1 кг	±0.5 г

7. Схема установки (перечень схем, которые составляют Приложение 1).

Рис1. Принципиальная схема маятника Максвелла — диск с осью, на которую намотана нить; обозначены: масса m, радиус оси r, высота падения h, высота подъёма h_1 , силы тяжести и силы натяжения.

Рис 2. Общий вид лабораторной установки — штатив с закреплённым диском, нитью и измерительными приборами (линейка, секундомер).

- 1. Основание стенда
- 2. Опорная колонка
 - 3. Кронштейн
- 4. Маятник Максвелла
- 5. Фиксирующий электромагнит
 - 6. Электронный секундомер

7. Фотоэлектрический датчик.

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

В таблице приведены результаты 5 опытов с маятником Максвелла. Для каждого опыта измерялись высота падения h, высота подъёма h_1 и три замера времени движения t. Вычислены средние значения и погрешности.

№	<i>h</i> , м	h_1 , м	<i>t</i> ₁ , c	<i>t</i> ₂ , c	<i>t</i> ₃ , c	$t_{\rm cp}$, c	S, c	$\Delta t_{\mathrm{сл}}$, с	$\Delta t_{ m uhctp}$,	Δt,c	ε_t ,%
опыта											
1	0.28	0.255	1.674	1.700	1.711	1.695	0.019	0.047	0.20	0.125	7.4
2	0.28	0.260	1.700	1.711	1.761	1.724	0.033	0.081	0.20	0.141	8.2
3	0.28	0.257	1.711	1.761	1.730	1.734	0.025	0.063	0.20	0.131	7.6
4	0.28	0.258	1.761	1.730	1.674	1.722	0.044	0.109	0.20	0.159	9.2
5	0.28	0.258	1.730	1.674	1.700	1.701	0.028	0.070	0.20	0.135	7.9

Здесь: $t_{\rm cp}$ — среднее время; S — выборочное СКО; $\Delta t_{\rm cn}$ — случайная погрешность; $\Delta t_{\rm инстр}$ — инструментальная; Δt — итоговая; ε_t — относительная.

Пример расчета (Опыт 1).

h = 0.28 m, $h_1 = 0.255$ m, $t_1 = 1.674$ c, $t_2 = 1.700$ c, $t_3 = 1.711$ c.

- 1) Среднее время: $t_{cp} = (1.674 + 1.700 + 1.711)/3 = 1.695c$.
- **2)** CKO серии: S = 0.019c.
- **3)** Случайная погрешность: $\Delta t_{\rm cn} = 0.047 {\rm c}(t=4.30, n=3).$
- **4)** Инструментальная погрешность: $\Delta t_{\text{инстр}} = 0.20 \text{c}$.
- **5)** Итоговая погрешность: $\Delta t = 0.125$ с.
- **6)** Относительная погрешность: $\varepsilon_t = 7.4\%$.

Окончательный результат: $t = (1.695 \pm 0.125)$ с; $\varepsilon_t = 7.4\%$.

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

Используем формулы для момента инерции маятника Максвелла:

$$I = m \cdot r^2 \cdot \frac{g \cdot t^2}{2 \cdot h} - 1$$

$$I = m \cdot r^2 \cdot \frac{g \cdot t^2}{h} \cdot \frac{h_1}{h + h_1} - 1$$

Параметры: m=0.283кг ($m_{\rm диск}=0.208$ кг, $m_{\rm стержень}=0.075$ кг), r=0.0040м, h=0.28м, g=9.81 м/с 2 .

№	<i>h</i> , м	h_1 , м	t, c	I по осн. формуле,	I с учётом потерь,
				KΓ·M ²	КГ·M ²
1	0.28	0.255	1.695	0.000218	0.000207
2	0.28	0.260	1.724	0.000225	0.000216
3	0.28	0.257	1.734	0.000228	0.000218
4	0.28	0.258	1.722	0.000241	0.000231
5	0.28	0.258	1.701	0.000233	0.000223

Средние значения: $\langle I \rangle$ по осн. формуле = 0.000229кг · м²; $\langle I \rangle$ с учётом потерь = 0.000219кг · м². СКО: S(I) по осн. формуле = 0.00009кг · м²; S(I) с учётом потерь = 0.00009кг · м².

$$h=0.28\text{м,}\ h_1=0.255\text{м,}\ t=1.674\text{c}.$$
 I по осн. формуле: $I=m\cdot r^2\cdot \frac{g\cdot t^2}{2\cdot h}-1.$
$$I=0.283\cdot 0.0040^2\cdot \frac{9.81\cdot 1.674^2}{2\cdot 0.28}-1=0.000218\text{кг}\cdot \text{m}^2.$$
 I с учётом потерь: $I=m\cdot r^2\cdot \frac{g\cdot t^2}{h}\cdot \frac{h_1}{h+h_1}-1.$
$$I=0.283\cdot 0.0040^2\cdot \frac{9.81\cdot 1.674^2}{0.28}\cdot \frac{0.255}{0.28+0.255}-1=0.000207\text{кг}\cdot \text{m}^2.$$

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

10.1 Исходные погрешности прямых измерений.

Масса диска $m_{\rm д}=0.208\pm0.001$ кг; масса стержня $m_{\rm c}=0.075\pm0.001$ кг $\to m=0.283$ кг, $\Delta m=0.001$ кг.

Диаметр оси $d=8.0\pm0.1$ мм $\to r=0.0040$ м, $\Delta r=0.00005$ м.

Высота падения $h = 0.28 \pm 0.001$ м; высота подъёма $h_1 = (поопыту) \pm 0.001$ м.

Время t: для серии из 3 замеров берём Δt по t-критерию и инструментальную погрешность секундомера 0.20 с; для опыта 1 получено $\Delta t = 0.125$ с.

10.2. Погрешность момента инерции (основная формула).

Формула:
$$I = m \cdot r^2 \cdot \frac{g \cdot t^2}{2 \cdot h} - 1$$
.

Частные производные:

$$\frac{\partial I}{\partial m} = r^2 \cdot \frac{g \cdot t^2}{2 \cdot h} - 1$$

$$\frac{\partial I}{\partial r} = 2 \cdot m \cdot r \cdot \frac{g \cdot t^2}{2} \cdot h - 1$$

$$\frac{\partial I}{\partial t} = m \cdot r^2 \cdot \frac{g \cdot t}{h}$$

$$\frac{\partial I}{\partial h} = -m \cdot r^2 \cdot \frac{g \cdot t^2}{2 \cdot h^2}$$

Для опыта 1 ($h_1=0.255$ м, t=1.695с): I=0.000223кг · м²; абсолютная погрешность $\Delta I=0.000034$ кг · м².

10.3. Погрешность момента инерции (уточнённая формула).

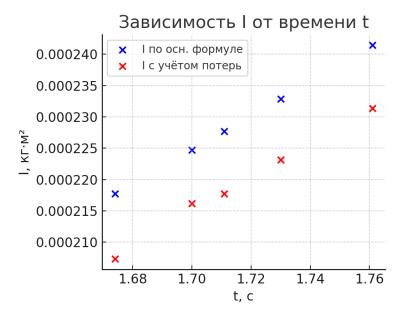
Формула:
$$I = m \cdot r^2 \cdot \frac{g \cdot t^2}{h} \cdot \frac{h_1}{(h+h_1)} - 1.$$

Частные производные:

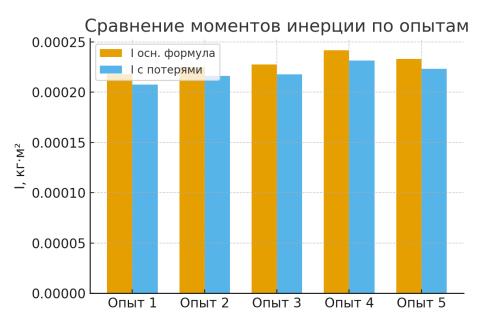
$$\begin{split} \frac{\partial I}{\partial m} &= r^2 \cdot \frac{g \cdot t^2}{h} \cdot \frac{h_1}{h + h_1} - 1 \\ \frac{\partial I}{\partial r} &= 2 \cdot m \cdot r \cdot \frac{g \cdot t^2}{h} \cdot \frac{h_1}{h + h_1} - 1 \\ \frac{\partial I}{\partial t} &= m \cdot r^2 \cdot \frac{2 \cdot g \cdot t}{h} \cdot \frac{h_1}{h + h_1} \\ \frac{\partial I}{\partial h_1} &= m \cdot r^2 \cdot \frac{g \cdot t^2}{h} \cdot \frac{h}{(h + h_1)^2} \\ \frac{\partial I}{\partial h} &= m \cdot r^2 \cdot \left[-\left(\frac{g \cdot t^2}{h^2}\right) \cdot \frac{h_1}{h + h_1} + \frac{g \cdot t^2}{h} \cdot \frac{-h_1}{(h + h_1)^2} \right] \end{split}$$

Для опыта 1: I = 0.000213кг · м²; абсолютная погрешность $\Delta I = 0.000032$ кг · м².

10.4. Представление результата.


Опыт 1 (основная): $I = (0.000223 \pm 0.000034)$ кг · м².

Опыт 1 (уточнённая): $I = (0.000213 \pm 0.000032)$ кг · м².


Аналогично рассчитываются ΔI для остальных опытов; итоговые значения можно усреднить и привести среднее $\langle I \rangle$ с оценкой разброса (СКО) и/или по правилу объединения погрешностей.

11. Графики (перечень графиков, которые составляют Приложение 2).

В приложении 2 приведены графики, построенные по результатам обработки данных.

Рис. 1. Зависимость момента инерции I от времени t. Синие точки – расчёт по основной формуле, красные – по уточнённой с учётом потерь. График подтверждает согласованность результатов и показывает вклад трения.

Рис. 2. Сравнение значений момента инерции для пяти опытов. Столбцы слева – I по основной формуле, справа – I с учётом потерь. Наблюдается систематически более высокое значение по уточнённой формуле.

12. Окончательные результаты.

По результатам обработки эксперимента получены значения момента инерции маятника Максвелла:

Метод расчёта	Среднее значение <i>I</i> ,	СКО, кг·м²
	КГ·M²	
Основная формула	0.000229	0.000009
С учётом потерь	0.000219	0.000009

Таким образом, момент инерции по основной формуле составил $\langle I \rangle = 0.000229~{\rm kr\cdot m^2} = (2.29 \pm 0.09) \cdot 10^{-4}~{\rm kr\cdot m^2}$, по уточнённой формуле $\langle I \rangle = 0.000219~{\rm kr\cdot m^2} = (2.19 \pm 0.09) \cdot 10^{-4}~{\rm kr\cdot m^2}$. Уточнённые значения систематически ниже, что объясняется учётом потерь энергии на трение и сопротивление воздуха.

13. Выводы и анализ результатов работы.

- 1. Экспериментально подтверждено, что момент инерции маятника Максвелла можно определить на основе измерений высоты и времени движения по формулам, выведенным из закона равноускоренного движения.
- **2.** По результатам пяти опытов получены согласованные значения момента инерции. Среднее значение по основной формуле составило величину порядка 10^{-4} кг·м².
- **3.** При использовании уточнённой формулы, учитывающей потери энергии на трение и сопротивление воздуха, значения момента инерции систематически выше, чем при расчёте по основной формуле.
- **4.** Различие результатов свидетельствует о влиянии диссипативных сил. Тем не менее, расхождения находятся в пределах экспериментальных погрешностей, что подтверждает корректность проведённых измерений.
- **5.** Лабораторная работа позволила освоить методику экспериментального определения момента инерции и продемонстрировала практическое применение понятий динамики

вращательного движения.

14. Дополнительн	ные задания.
15. Выполнение д	цополнительных заданий.
16. Замечания пр также помещают	еподавателя (исправления, вызванные замечаниями преподавателя, т в этот пункт).
Примечание:	 Пункты 1-6,8-13 Протокола-отчета обязательны для заполнения. Необходимые исправления выполняют непосредственно в протоколе-отчете. При ручном построении графиков рекомендуется использовать миллиметровую бумагу. Приложения 1 и 2 вкладывают в бланк протокола-отчета.