Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа: *К3221*

Студент: Дощенников Никита

Преподаватель: Попов Антон Сергеевич

К работе допущен:

Работа выполнена:

Отчет принят:

Рабочий протокол и отчет по лабораторной работе №3.01

1. Цель работы.

Построение сечений эквипотенциальных поверхностей и силовых линий электростатического поля на основе экспериментального моделирования распределения потенциала в слабопроводящей среде.

2. Задачи, решаемые при выполнении работы.

- Экспериментально построить сечения эквипотенциальных поверхностей и силовых линий электростатического поля для плоского конденсатора и поскости с дополнительным проводящим кольцом.
- Измерить распределение потенциала в слабопроводящей среде и по данным построить эквипотенциальные линии.
- По свойству ортогональности эквипотенциалей и линий напряжённости построить картину силовых линий и указать их направление.
- Рассчитать величины напряжённости поля в центре ванны и вблизи электрода.
- По данным измерений оценить поверхностную плотность зарядов на электродах.
- Для эксперимента с кольцом определить области минимальной и максимальной напряжённости и оценить E_{\min} и E_{\max} .

• Построить и сравнить графики $\varphi(X)$ для горизонтали Y=10 см для двух экспериментов.

3. Объект исследования.

Электростатическое поле между двумя плоскими электродами в однородной слабопроводящей среде и изменение распределения потенциала при установке в ванну проводящего кольца.

4. Метод экспериментального исследования.

Моделирование электростатического поля в слабопроводящей среде с использованием двух плоских электродов, подключённых к генератору переменного напряжения. Потенциал внутри ванны измеряют зондом, подключённым к вольтметру. По набору точечных измерений потенциала строят эквипотенциальные линии, затем по ортогональности строят силовые линии.

5. Рабочие формулы и исходные данные.

Формула	Пояснения
$ec{E}(ec{r})=rac{ec{F}(ec{r})}{q}$	Вектор напряженности электрического поля. \vec{F} - сила, действующая на неподвижный заряд q , помещенный в данную точку. Заряд q - пробный. \vec{r} - радиусвектор точки.
$arphi(ec{r}) = rac{W_\Pi(ec{r})}{q}$	Потенициал в данном точке поля. W_{Π} - потенциальная энергия заряда q , помещенного в данную точку.
$A_{12}=q(\varphi_1-\varphi_2).$	Работа сил электростатического поля над зарядом <i>q</i> при его перемещении из точки с

	потенциалом $arphi_1$ в точку с потенциалом $arphi_2$.
$ec{E} = -\operatorname{grad} arphi \equiv -\vec{\nabla} arphi$ $arphi_2 - arphi_1 = -\int_1^2 \vec{E} d\vec{l}$	Связь напряженности и потенциала электростатического поля.
$\vec{\nabla}\varphi = \hat{e}_x \frac{\partial \varphi}{\partial x} + \hat{e}_y \frac{\partial \varphi}{\partial y} + \hat{e}_z \frac{\partial \varphi}{\partial z}$	Вектор градиента потенциала. x,y,z - декартовы координаты. $\hat{e}_x,\hat{e}_y,\hat{e}_z$ - единичные вектора положительных направлений (орты) координатных осей Ox,Oy,Oz
$\langle E_{12}\rangle \approxeq \frac{\varphi_1 - \varphi_2}{l_{12}}$	Средняя напряженность между точками на одной силовой линии с потенциалами φ_1 и φ_2 , где l_{12} - длина участка силовой линии между точками.
$ec{\jmath} = \sigma ec{E}$	Закон Ома в дифференциальной форме, где $\vec{\jmath}$ - вектор плотности тока в проводящей среде, σ - удельная электропроводность среды.
$\vec{\nabla} \cdot \vec{j} \equiv \operatorname{div} \vec{j} = \frac{\partial j_x}{\partial x} + \frac{\partial j_y}{\partial y} + \frac{\partial j_z}{\partial z} = -\frac{\partial \rho}{\partial t}$	Плотность тока в любой проводащей среде удовлетворяет уравнению неразрывности. $ ho$ - объемная плотность заряда. Для стационарного тока $ ho$ =

	$\mathrm{const},\; rac{\partial ho}{\partial t} = 0 \; \mathrm{u} \; \mathrm{B} \; \mathrm{этом} \; \mathrm{случаe} \ ec{ abla} \cdot ec{\jmath} = 0.$
$\sigma(\vec{\nabla} \cdot \vec{E}) = 0 \Rightarrow \vec{\nabla} \cdot \vec{E} = 0$	Следует из однородности σ .
$\operatorname{rot} \vec{\jmath} \equiv \vec{\nabla} \times \vec{\jmath} = 0$	Получено путем применения к $\vec{\jmath} = \sigma \vec{E}$ операцию нахождения ротора и учитывая безвихревой характер постоянного тока.
$ec{ abla} imesec{E}=0$	Подставили $\vec{\jmath}=\sigma \vec{E}$ в rot $\vec{\jmath}\equiv$ $\vec{ abla} imes \vec{\jmath}=0$

Исходные данные:

- Межэлектродная установленная амплитуда напряжения $U=14\mathrm{B}.$
- Частота переменного напряжения генератора $f=400\pm 50$ Гц
- Диапазон вольтметра $0 \div 20$ В.
- Координатная сетка на миллиметровой бумаге шаги по Y используются: 2,6,10,14,18 см; при конфигурации с кольцом рекомендуется уменьшить шаг потенциала и шаг Y рядом с кольцом до 1–2 см.
- Шаг изменения потенциала для первого эксперимента $\delta \varphi = 2 \mathrm{B}$
- Для эксперимента с кольцом $\Delta \varphi = 1$ В
- Погрешности измерения координат $\Delta X = \pm 1$ мм, $\Delta Y = \pm 0.5$ мм.

6. Измерительные приборы

№ п/п	Наименование	Тип прибора	Используемый	Погрешность	
			диапазон	прибора	
1	Вольтметр	AB1	0-20 B	$\pm 0.5\%$	
2	Амперметр	AB1	0-5 A	$\pm 1.0\%$	
3	Резистор	ГН1	0-10 κΩ	$\pm 5\%$	

7. Схема установки (перечень схем, которые составляют Приложение 1).

8. Результаты прямых измерений.

Без диска.

$ec{arphi_1}$	X_1	Y_1	$arphi_{2}$	X_2	Y_2	$arphi_3$	X_3	Y_3
1.89	2.0	2	3.89	6.8	2	5.89	11.8	2
	2.5	6		6.8	6		12.2	6
	2.8	10		7.0	10		12.5	10
	2.7	14		6.9	14		12.8	14
	2.0	18		7.2	18		12.6	18

$arphi_4$	X_4	Y_4	$arphi_5$	X_5	Y_5	$arphi_6$	X_6	Y_6
7.89	16.7	2	9.89	21.3	2	11.89	26.1	2
	16.8	6		21.3	6		25.7	6
	16.5	10		21.3	10		25.6	10
	16.3	14		21.1	14		25.7	14
	16.3	18		21.0	18		26.0	18

С диском.

$arphi_1$	X_1	Y_1	$arphi_2$	X_2	Y_2	$arphi_3$	X_3	Y_3	$arphi_4$	X_4	Y_4
2.4	2.0	2	3.4	4.1	2	4.4	6.1	2	5.4	8.4	2
	2.1	4		4.0	4		5.9	4		7.8	4
	2.6	6		4.1	6		5.9	6		7.4	6
	2.8	8		4.0	8		5.5	8		7.2	8
	3.0	10		4.2	10		5.8	10		7.2	10
	2.8	12		4.2	12		5.7	12		7.7	12
	3.1	14		4.6	14		6.3	14		8.2	14
	2.7	16		4.5	16		7.0	16			16
	2.8	18		4.8	18		7.5	18		9.8	18

$arphi_5$	X_5	Y_5	$arphi_6$	X_6	Y_6	$arphi_7$	X_7	Y_7	$arphi_8$	X_8	Y_8
6.4	11.2	2	7.4	16.0	2	8.4	19.8	2	9.4	22.2	2
	1	4			4		20.3	4			4
	9.0	6			6		21.3	6		22.8	6
	_	8			8		21.7	8			8
	8.8	10			10		21.8	10		22.9	10
	1	12			12		21.3	12			12
	11.0	14			14		20.7	14		22.5	14
	_	16		_	16		19.7	16		_	16
	12.3	18		15.5	18		18.0	18		21.7	18

$arphi_9$	X_9	Y_9	$arphi_{10}$	X_{10}	Y_{10}
10.4	24.5	2	11.4	26.7	2
		4			4
	24.4	6		26.2	6
		8			8
	24.6	10		26.2	10
		12			12
	24.2	14		26.0	14
	_	16		_	16
	23.9	18		26.1	18

9. Построение эквипотенциальных линий.

Сначала точки с миллиметровой бумаги были перенесены в компьютер при помощи программы в Приложении.

10. Расчет величины напряженности.

Расстояние между эквипотенциалями $\varphi=5.89\mathrm{B}$ и $\varphi=7.89\mathrm{B}$:

$$l=16.5-12.3=4.2~{
m cm}=0.042{
m m}\Delta arphi=7.89-5.89=2.0{
m B}$$

$$E_{
m II} = rac{\Delta arphi}{l} = rac{2.0}{0.042} = 47.6 \; {
m B/m}$$

Берём точки у правого края при у = 10: $\varphi = 9.89$ В, $\varphi = 11.89$ В.

$$l=25.6-21.3=4.3$$
 см = 0.043 м $\Delta \varphi=11.89-9.89=2.0$ В

$$E_{\text{\tiny 9}} = \frac{\Delta \varphi}{l} = \frac{2.0}{0.043} = 46.5 \text{ B/m}$$

У правого электрода ближайшая точка: $\varphi=11.89$ В при x=25.6 см

До электрода: $\Delta l_n = 30-25.6 = 4.4 \; \text{cm} = 0.044 \text{м}$ До электрода $\varphi = 14 \text{B}$

$$\Delta\varphi = 14 - 11.89 = 2.11 \\ \mathrm{B}\sigma' = \varepsilon_0 \cdot \frac{\Delta\varphi}{\Delta l_n} = 8.85 \cdot 10^{-12} \cdot \frac{2.11}{0.044} \\ \sigma' = 4.24 \cdot 10^{-10} \ \mathrm{Kp/m^2}$$

Погрешности:

$$\Delta \varphi = \pm 0.1$$
В, $\Delta X = \pm 1$ мм

Для E_{II} :

$$\varphi = \frac{2 \cdot 0.1}{2.0} = 0.1\delta l = \frac{2 \cdot 0.001}{0.042} = 0.048\delta E = \sqrt{0.1^2 + 0.048^2} = 0.111\Delta E_{\text{tt}} = 47.6 \cdot 0.111 = 5.3 \text{ B/s}$$