Задачи

Закон Кулона. Принцип суперпозиции

1. На шелковой нити подвешен шар массы m, заряд которого q_1^+ . Рассчитать на какое расстояние необходимо поднести положительно заряженный шар, с зарядом q_2^+ , чтобы сила натяжения нити уменьшилась вдвое.

Решение:

На шар действуют следующие силы:

- Сила тяжести: $F_q = mg$ (действует вниз)
- Сила натяжения нити: T (действует вдоль нити)
- Сила электрического отталкивания $F_e = k rac{q_1 q_2}{l^2}$ (действует горизонтально, если шар q_2 подносят сбоку)

Теперь нить отклонилась на угол θ с вертикалью (под действием электрической силы).

Найдем компоненты:

- Вертикальная: $T\cos\theta=mg$
- Горизонтальная: $T\sin\theta=F_e=krac{q_1q_2}{l^2}$

Так как натяжение нити уменьшилось вдвое: $T = \frac{mg}{2}$.

Подставим в вертикальную компоненту:

$$T\cos\theta = mg \Rightarrow \frac{mg}{2}\cos\theta = mg \Rightarrow \cos\theta = 2$$

Так как $\cos\theta$ не может быть больше 1, мы понимаем, что что-то не так...

Используем теорему Пифагора для сил:

$$T = \sqrt{(mg)^2 + F_e^2}$$

- Изначально $F_e=0\Rightarrow T_0=mg$ Теперь $T=\frac{mg}{2}$

$$T = \sqrt{(mg)^2 + F_e^2} = \frac{mg}{2} \Rightarrow F_e^2 + (mg)^2 = \left(\frac{mg}{2}\right)^2$$
$$F_e^2 = \left(\frac{mg}{2}\right)^2 - (mg)^2 = \frac{m^2g^2}{4} - m^2g^2 = -\frac{3m^2g^2}{4}$$

Получилось отрицательное число...

То есть:

$$F_e=T_0-T=mg-\frac{mg}{2}=\frac{mg}{2}$$

$$F_e=k\frac{q_1q_2}{l^2}=\frac{mg}{2}$$

Отсюда:

$$l^2 = \frac{2kq_1q_2}{mg} \Rightarrow l = \sqrt{\frac{2kq_1q_2}{mg}}$$

Ответ:
$$l=\sqrt{rac{2kq_1^+q_2^+}{mg}}$$

2. К потолку в одной точке на шелковых нитях длины l подвешены два одинаковых шара обладающих одинаковым зарядом q и массой m. Раастояние между шарами $x \ll l$. Рассчитать скорость утечки зарядов $\frac{dq}{dt}$ с каждого шара, если скорость их сближения, как функция от x имеет виды: $v(x) = \frac{\alpha}{\sqrt{x}}$ (α - некоторая постоянная).

Решение:

Для одного шарика вертикальная и горизонтальная составляющие сил дают:

• вертикальная: $T\cos\theta=mg$

• горизонтальная: $T\sin\theta=F_e$

где F_e - кулоновская сила отталкивания между шариками:

$$F_e = k \frac{q^2}{x^2}$$

При малом отклонении $\sin\theta \approx \tan\theta \approx \frac{\frac{x}{2}}{l} = \frac{x}{2l}$ (смещение одного шарика по горизонтали равно $\frac{x}{2}$). Подставим $T \approx mg$ (поскольку $\cos\theta \approx 1$) в горизонтальное уравнение:

$$mg \cdot \frac{x}{2l} \approx F_e = k \frac{q^2}{x^2}$$

Отсюда найдем зависимость q от x:

$$k\frac{q^2}{x^2} = \frac{mgx}{2l} \Rightarrow q^2 = \frac{mg}{2kl}x^3$$

Значит

$$q(x) = \sqrt{\frac{mg}{2kl}} x^{\frac{3}{2}}$$

По цепному правилу:

$$\frac{dq}{dt} = \frac{dq}{dx} \cdot \frac{dx}{dt}.$$

Вычислим производную по x:

$$\frac{dq}{dx} = \sqrt{\frac{mg}{2kl}} \cdot \frac{3}{2}x^{\frac{1}{2}}.$$

Теперь используем заданную скорость. Поскольку v(x) дана как модуль скорости сближения, скорость изменения расстояния x равна

$$\frac{dx}{dt} = -\frac{\alpha}{\sqrt{x}}$$

Подставляем:

$$\frac{dq}{dt} = \frac{3}{2} \sqrt{\frac{mg}{2kl}} x^{\frac{1}{2}} \cdot \left(-\frac{\alpha}{\sqrt{x}} \right) = -\frac{3}{2} \alpha \sqrt{\frac{mg}{2kl}}$$

Ответ: $\frac{dq}{dt} = \frac{3\alpha}{2} \sqrt{\frac{mg}{2kl}}$

3. Радиус векторы двух положительных зарядов q_1 и q_2 соответственно $\vec{r_1}$ и $\vec{r_2}$. Рассчитать отрицательный заряд q_3 и его радиус-вектор $\vec{r_3}$

точки в которую его надо поместить, чтобы сила, действующая на каждый из зарядов была равна 0.

Решение:

Чтобы сила на q_1 была нуль, векторная сумма сил от q_2 и q_3 на q_1 должна быть нулём. Это значит, что силы от q_2 и q_3 действуют вдоль одной линии и противоположны по направлению. Отсюда следует, что \vec{r}_3 лежит на прямой, проходящей через \vec{r}_1 и \vec{r}_2 . Аналогично для равновесия q_2 . Поэтому \vec{r}_3 лежит на отрезке между \vec{r}_1 и \vec{r}_2 .

Пусть $L = |\vec{r}_2 - \vec{r}_1|$ — расстояние между первыми двумя зарядами. Обозначим

$$d_{13} = |\vec{r}_3 - \vec{r}_1|, \quad d_{23} = |\vec{r}_3 - \vec{r}_2|.$$

Тогда $d_{13} + d_{23} = L$

Уравнения равновесия

Сила Кулона по модулю между точками i и j (в масштабе k):

$$F_{ij} = k \frac{|q_i q_j|}{d_{ij}^2}.$$

Для заряда q_1 : силы от q_2 и q_3 должны компенсировать друг друга, значит по модулю

$$k\frac{q_1q_2}{L^2} = k\frac{q_1 |q_3|}{d_{13}^2}.$$

Отсюда (сокращая k и $q_1, q_1 > 0$):

$$\frac{q_2}{L^2} = \frac{|q_3|}{d_{13}^2}.$$

Помня, что q_3 отрицателен, можно записать

$$q_3 = -q_2 \frac{d_{13}^2}{L^2}. (1)$$

Аналогично для заряда q_2 :

$$k\frac{q_1q_2}{L^2} = k\frac{q_2 |q_3|}{d_{23}^2},$$

откуда (сократив k и q_2):

$$\frac{q_1}{L^2} = \frac{|q_3|}{d_{23}^2} \quad \Rightarrow \quad q_3 = -q_1 \frac{d_{23}^2}{L^2}. \tag{2}$$

Приравняем правые части (1) и (2) — обе равны q_3 :

$$-q_2 \frac{d_{13}^2}{L^2} = -q_1 \frac{d_{23}^2}{L^2} \quad \Rightarrow \quad q_2 d_{13}^2 = q_1 d_{23}^2.$$

Возвращаемся к параметризации расстояний: положим $d_{13}=t$. Тогда $d_{23}=L-t$. Подставим:

$$q_2 t^2 = q_1 (L - t)^2.$$

Возьмём корни (положительные, так как $t>0,\,L-t>0$):

$$\sqrt{q_2}, t = \sqrt{q_1}(L - t).$$

Решаем относительно t:

$$t(\sqrt{q_2} + \sqrt{q_1}) = \sqrt{q_1}L \quad \Rightarrow \quad t = \frac{\sqrt{q_1}}{\sqrt{q_1} + \sqrt{q_2}}L.$$

Теперь вернёмся к векторной форме: точка \vec{r}_3 находится на отрезке $\vec{r}_1 \to \vec{r}_2$ на расстоянии t от \vec{r}_1 . Значит

$$\vec{r}_3 = \vec{r}_1 + \frac{t}{L}(\vec{r}_2 - \vec{r}_1) = \vec{r}_1 + \frac{\sqrt{q_1}}{\sqrt{q_1} + \sqrt{q_2}}(\vec{r}_2 - \vec{r}_1).$$

Разворачивая:

$$\vec{r}_3 = \frac{\sqrt{q_1}\vec{r}_2 + \sqrt{q_2}\vec{r}_1}{\sqrt{q_1} + \sqrt{q_2}}.$$

Наконец, подставим $\frac{t}{L} = \frac{\sqrt{q_1}}{\sqrt{q_1} + \sqrt{q_2}}$ в (1) для q_3 :

$$q_3 = -q_2 \left(\frac{t}{L}\right)^2 = -q_2 \left(\frac{\sqrt{q_1}}{\sqrt{q_1} + \sqrt{q_2}}\right)^2 = -\frac{q_1 q_2}{\left(\sqrt{q_1} + \sqrt{q_2}\right)^2}.$$

Ответ:
$$q_3=-rac{q_1q_2}{\left(\sqrt{q_1}+\sqrt{q_2}
ight)^2}, \vec{r}_3=rac{\sqrt{q_1}\vec{r}_2+\sqrt{q_2}\vec{r}_1}{\sqrt{q_1}+\sqrt{q_2}}$$

4. Точечный заряд q=50 мкКл расположен в точке с радиус-вектором $\vec{r}_0=2\vec{\imath}+3\vec{\jmath}$. Найти напряженность \vec{E} электрического поля и ее модуль в точке с радиус-вектором $\vec{r}=8\vec{\imath}-5\vec{\jmath}$. Координаты векторов заданы в метрах.

Решение:

Найдём вектор \vec{R} — радиус-вектор от заряда до точки наблюдения:

$$\vec{R} = \vec{r} - \vec{r}_0 = (8 - 2, -5 - 3) = (6, -8)$$
m.

Длина вектора

$$R = |\vec{R}| = \sqrt{6^2 + (-8)^2} = \sqrt{36 + 64} = \sqrt{100} = 10$$
m.

Постоянная Кулона (в СИ):

$$k = \frac{1}{4\pi\varepsilon_0} \approx 8.9875517923 \times 10^9 \frac{\text{H} \cdot \text{m}^2}{\text{K}\pi^2}.$$

Поле точечного заряда:

$$\vec{E}(\vec{r}) = kq \frac{\vec{R}}{R^3}.$$

Вычислим по шагам.

- 1. $kq = 8.9875517923 \times 10^9 \cdot 50 \times 10^{-6} = 449377.589615.$
- 2. $R^3 = 10^3 = 1000$.
- 3. множитель перед вектором \vec{R} :

$$\frac{kq}{R^3} = \frac{449377.589615}{1000} = 449.377589615.$$

4. Компоненты поля:

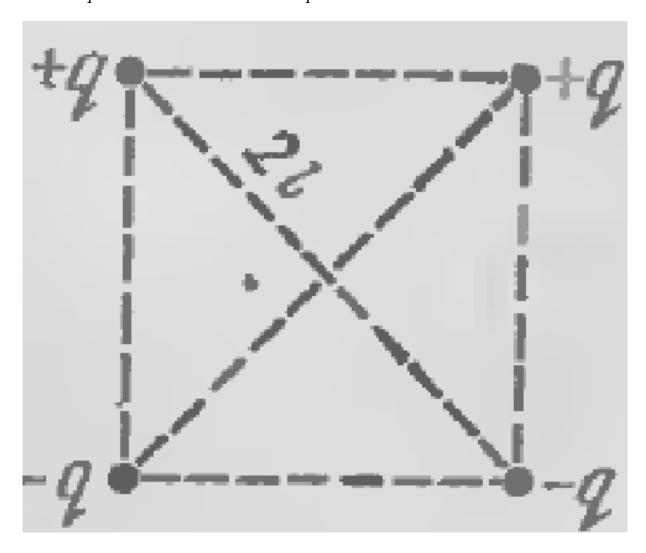
$$E_x = 449.377589615 \cdot 6 = 2696.26553769 \; \text{B/m},$$

$$E_y = 449.377589615 \cdot (-8) = -3595.02071692 \; \text{B/m}.$$

5. Модуль поля:

$$|\vec{E}|=\sqrt{E_x^2+E_y^2}=\sqrt{2696.2655^2+(-3595.0207)^2}=4493.77589615\,\,\mathrm{B/m}.$$
 Ответ: $E=4.5\,\,\mathrm{kB/m}; \vec{E}=2.7\vec{\imath}-3.6\vec{\jmath}$

5. Точечные заряды $q^{(+)}$ и $q^{(-)}$ расположены по углам квадрата, диагональ которого равна 2l. Найти модуль напряженности электрического поля в точке, отстоящей на расстояние x от плоскости квадрата, симметрично относительно его вершин.



Решение:

Положение вершин и параметры

Диагональ квадрата = 2l. Пусть центр квадрата — начало координат, стороны параллельны осям x,y. Тогда координаты вершин можно взять как

$$(\pm a, \pm a, 0),$$

где

$$a = \frac{l}{\sqrt{2}}$$

Пусть заряды:

- в верхних вершинах (-a, +a, 0) и (+a, +a, 0) по +q;
- в нижних вершинах (-a, -a, 0) и (+a, -a, 0) по -q.

Точка наблюдения (вершина «пирамиды») находится на оси, проходящей через центр и перпендикулярно плоскости квадрата:

$$P(0,0,x)$$
.

Расстояние от любой вершины до точки P:

$$R = \sqrt{a^2 + a^2 + x^2} = \sqrt{2a^2 + x^2} = \sqrt{l^2 + x^2}.$$

Поле от одной вершины — векторная форма

Поле точечного заряда q_i в точке P равно

$$\vec{E}_i = k \frac{q_i}{R^3} \vec{R}_i,$$

где \vec{R}_i — вектор от вершины к точке P.

Возьмём, например, вершину (+a, +a, 0) с зарядом +q. Тогда

$$\vec{R} = (0 - a, 0 - a, x - 0) = (-a, -a, x).$$

Компоненты поля от этой вершины:

$$E_x^{(1)} = k \frac{q(-a)}{R^3}, \quad E_y^{(1)} = k \frac{q(-a)}{R^3}, \quad E_z^{(1)} = k \frac{qx}{R^3}.$$

Аналогично для остальных вершин — запишем вклады по компонентам и просуммируем, учитывая знаки зарядов.

Суммирование вкладов — симметрия

Из симметрии видно:

• x - компоненты от вершин попарно отменяются (пары (+a,+a) и (+a,-a) дают противоположные x-компоненты с одинаковыми

коэффициентами и одинаковыми зарядами по модулю — суммарно ноль).

- вертикальные (z) компоненты: верхние вершины дают вклад $+k\frac{qx}{R^3}$ каждая, нижние дают вклад -q каждое, то есть вклад нижних равен $-k\frac{qx}{R^3}$ для каждой; суммарно $E_z=k\frac{qx}{R^3}+k\frac{qx}{R^3}-k\frac{qx}{R^3}-k\frac{qx}{R^3}=0$. Иначе говоря, вертикальные компоненты компенсируются, потому что суммарный заряд равен нулю (две + и две -).
- y компоненты не компенсируются, а складываются с одинаковым знаком. Посчитаем их.

Возьмём по очереди все четыре угла. Для вершины (+a, +a) с +q её y - компонента равна

$$E_y^{(+a,+a)} = k \frac{q(-a)}{R^3}.$$

Для вершины (-a,+a) с +q: $E_y^{(-a,+a)}=krac{q(-a)}{R^3}$. Их сумма даёт $2\cdot krac{q(-a)}{R^3}$. Для нижних вершин с зарядом -q:

- вершина (+a,-a): вектор $\vec{R}=(-a,+a,x)$ (заметим: её y компонента равна +a), и заряд -q даёт вклад $E_y^{(+a,-a)}=(-q)\cdot k\frac{+a}{R^3}=-k\frac{qa}{R^3}.$
- вершина (-a,-a): аналогично даёт $-k \frac{qa}{R^3}$.

Сумма вкладов от нижних вершин: $-2k\frac{qa}{R^3}$. Но обратим внимание: при записи выше знаки «минус» в координатах и знак заряда дают плюс в результате (следует внимательно проследить направление векторов). Если аккуратно пройти по всем четырём, то итоговая сумма y-компонент равна

$$E_y = 4k \frac{qa}{R^3}.$$

(Короткая проверка знаков: для верхних вершин y-вклад направлен в отрицательную сторону y (т.к. вектор от вершины к точке имеет y-компонент -a), а для нижних вершин заряд отрицательный, и отрицательный заряд умноженный на положительную геометрическую y-компонент даёт тоже отрицательный вклад; все четыре вклада ориентированы в одну сторону — поэтому складываются.)

Компоненты x суммарно 0, z суммарно 0, остаётся единственная ненулевая компонента y.

Подставляем $a=rac{l}{\sqrt{2}}$ и $R=\sqrt{l^2+x^2}$

$$E = |E_y| = 4k\frac{qa}{R^3} = 4k\frac{q}{R^3} \cdot \frac{l}{\sqrt{2}} = k\frac{4}{\sqrt{2}}\frac{ql}{(l^2 + x^2)^{\frac{3}{2}}}.$$

Упростим коэффициент:

$$\frac{4}{\sqrt{2}} = 2\sqrt{2}.$$

Ответ:
$$E=krac{2\sqrt{2}ql}{(l^2+x^2)^{rac{3}{2}}}$$