Электромагнетизм

Электростатика

Q: 1. Что такое электрический заряд?
A:
Q: 2. Сформулируйте закон Кулона.
A:
Q : 3. Дайте определение напряженности электрического поля.
A :
Q : 4 . По какой формуле вычисляется напряженность электрического поля точечного заряда?
A:
${f Q}$: 5 . Сформулируйте принцип суперпозиции для вектора $ec E$.
A :
${f Q}$: 6. Дайте определение потока вектора $ec E$.
A:
Q : 7. Сформулируйте теорему Гаусса в интегральной форме.
A:
Q : 8. Сформулируйте теорему Гаусса в дифференциальной форме.
A:
${f Q}$: 9. B чем заключается физический смысл $divec E$?
A :

${f Q}$: 10. Дайте определение циркуляции вектора $ec E$.
${f Q}$: 11. Сформулируйте теорему о циркуляции вектора $ec E$? ${f A}$:
Q: 12. Дайте определение потенциального поля. A:
${f Q}$: 13. Докажите, что линии электростатического поля $ec E$ не могут быть замкнутыми. ${f A}$:
Q : 14 . По какой формуле можно определить потенциальную энергию системы точечных зарядов? A :
Q : 15 . Дайте определение потенциалов. A :
Q : 16 . Чему равен потенциал системы точечных зарядов? A :
${f Q}$: 17. Чему равен потенциал в случае непрерывного распределения заряда плотностью ρ ?
${f Q}$: 18 . Сформулировать теорему о циркуляции поля $ec E$ в дифференциальной форме. ${f A}$:

${f Q}$: 19. Как связаны между собой напряженность электростатического поля $ec E$ и его потенциал? ${f A}$:
Q : 20 . Что такое эквипотенциальная поверхность? A :
${f Q}$: 21 . Как расположены друг относительно друга эквипотенциальные поверхности и силовые линии поля ${f ec E}$?
Q : 22 . Дайте определение электрического диполя. A :
Q: 23. Что такое электрический дипольный момент? A:
Q : 24 . Как найти момент сил, действующих на диполь? A :
Q : 25 . Какие молекулы называют полярными? Неполярными? A :
Q : 26 . Опишите процесс поляризации диэлектрика. A :
Q : 27 . Какие заряды называют связанными? Сторонними? A :
\mathbf{Q} : 28 . Дайте определение поляризованности \vec{P} .

A:
Q : 29 . Что такое диэлектрическая восприимчивость вещества? A :
${f Q}$: ${f 30}$. Дайте определение вектора ${f ec D}$.
${f Q}$: 31 . Интегральная форма теоремы Гаусса для вектора $ec D$. ${f A}$:
${f Q}$: 32. Дифференциальная форма теоремы Гаусса для вектора $ec D$. ${f A}$:
Q: 33. Какие диэлектрики называют изотропными? A:
${f Q}$: 34 . Как связаны между собой \vec{P} и \vec{E} в изотропных диэлектриках? ${f A}$:
${f Q}$: 35 . Как связаны между собой \vec{D} и \vec{E} в изотропных диэлектриках? ${f A}$:
Q : 36 . Докажите, что внутри проводника, внесенного во внешнее электрическое поле, отсутствуют избыточные заряды. A :
Q : 37 . Чему равна напряженность электрического поля у поверхности проводника?
A :

Q : 38 . Дайте определение емкости уединенного проводника.
A :
Q : 39 . Что такое конденсатор? A :
Q : 40 . Дайте определение емкости конденсатора. A :
Q: 41. Как вычислить емкость батареи конденсаторов при последовательном соединении? При параллельном?A:
Q : 42 . По каким формулам вычисляете энергия электрического поля? A :
Q : 43 . Как вычислить работу при поляризации диэлектрика? A :

Постоянный электрический ток

Q : 1 . Что такое электрический ток?
A :
Q : 2 . Дайте определение плотности тока. A :
Q : 3 . Сформулируйте уравнение непрерывности (в интегральной форме). A :
Q : 4 . Сформулируйте уравнение непрерывности (в дифференицальной форме). A :
Q : 5 . Сформулируйте закон Ома для однородного проводника. A :
Q : 6 . Сформулируйте закон Ома в локальном виде. A :
Q : 7. Что такое сторонние силы? A :
Q : 8 . Сформулируйте обобщенный закон Ома в локальной форме. A :
Q : 9 . Сформулируйте закон Ома для неоднородного участка цепи. A :
Q : 10 . Сформулируйте закон Джоуля-Ленца (для однородного участка цепи).

A:

Q: **11**. Сформулируйте закон Джоуля-Ленца в локальной форме для однородного участка цепи.

A:

Q: **12**. Сформулируйте закон Джоуля-Ленца для неоднородного участка цепи.

A:

Магнитное поле. Электромагнитная индукция

Q: 1. Дайте определение силы Лоренца. A:
${f Q}$: 2. Что такое вектор $ec B$? ${f A}$:
${f Q}$: 3. Сформулируйте принцип суперпозиции для вектора ${f \vec{B}}$? ${f A}$:
Q : 4 . Сформулируйте закон Био-Савара-Лапласа. A :
${f Q}$: 5 . Найдите поле $ec B$ прямого тока. ${f A}$:
Q: 6. Какую силу называют силой Ампера? A:
Q : 7. Дайте определение магнитного момента. A :
${f Q}$: 8. Сформулируйте теорему Гаусса для вектора ${f B}$.
Q : 9 . В чем заключается механизм намагничения? A :
${f Q}$: 10. Дайте определение намагниченности ${f J}$.

Q : 11 . Какие токи называют молекулярными? A :
Q: 12. Какие токи называют поверхностными токами намагничивания? A:
Q: 13. Какие токи называют объемными токами намагничивания? A:
${f Q}$: 14. Дайте определение вектора $ec H$.
${f Q}$: 15 . Сформулируйте теорему о циркуляции вектора ${f H}$ (в интегральной и дифференциальной форме). ${f A}$:
${f Q}$: 16. Связь между $ec J$ и $ec H$? Между $ec B$ и $ec H$?
Q : 17 . В чем заключается явление электромагнитной индукции? A :
Q : 18 . Дайте определение ЭДС индукции. A :
Q : 19 . Сформулируйте правило Ленца. A :
Q : 20 . Какие токи называют токам Фуко?

A:

Q: **21**. Сформулируйте закон электромагнитной индукции.

A:

Уравнения Максвелла

Q : 1 . Дайте определение тока смещения.
A:
Q: 2. Дайте определение полного тока. A:
${f Q}$: 3. Сформулируйте теорему о циркуляции вектора ${f H}$ в случае произвольных токов (в интегральной и дифференциальной форме). ${f A}$:
Q : 4 . Сформулируйте уравнения Максвелла. A :
Q : 5 . В чем заключается содержание этих уравнений? A :

Оптика

Q : 1 . Уравнения Максвелла в интегральной форме (без вывода, но объяснением физического смысла всех членов).
\mathbf{A} :
Q: 2. Уравнения Максвелла в дифференциальной форме (без вывода, но объяснением физического смысла всех членов). A:
Q : 3 . Уравнения Максвелла в интегральной форме для случая отсутствия токов и зарядов (без вывода, но объяснением физического смысла всех членов).
A:
Q : 4 . Уравнения Максвелла в дифференциальной форме для случая отсутствия токов и зарядов (без вывода, но объяснением физического смысла всех членов). A :
Q: 5. Волновое уравнение (без вывода, но объяснением физического смысла всех членов).A:
Q : 6 . Уравнение плоской ЭМ волны (без вывода, но объяснением физического смысла всех членов). A :
Q : 7. Волновое число и волновой вектор (Определение. Направление. Формула). A :

${f Q}$: 8. Волновой фронт (Определение. Примеры (сферический и плоский $B\Phi$)).
\mathbf{A} :
Q : 9 . Показатель преломления среды (формула 1 через скорость света и фазовую скорость, формула 2 через проницаемости). A :
Q : 10 . Вектор Пойнтинга (формула без вывода, но объяснением физического смысла всех членов).
A :
Q : 11 . Интенсивность ЭМ излучения (Размерность. Выражение через квадрат амплитуды.).
A:
Q : 12 . Двухлучевая интерференция (Формула 1 через амплитуды и формула 2 через интенсивности).
A:
Q : 13 . Связь разности хода и разности фаз (формула, с объяснением физического смысла всех членов).
A:
Q : 14 . Условие максимума через разность хода и разность фаз (формула, с объяснением физического смысла всех членов).
A:
Q : 15 . Условие минимума через разность хода и разность фаз (формула, с объяснением физического смысла всех членов).
A :

Q : 16 . Видность интерференционной картины (формула, с объяснением физического смысла всех членов).
A:
Q : 17 . Ширина интерференционной полосы на примере схемы Юнга (ШИП выражается через параметры схемы. Без вывода, но объяснением физического смысла всех членов). A :
Q : 18 . Время и длина когерентности (Определение. Формула без вывода.). A :
Q : 19 . Разность хода при интерференции в тонких пленках (Формула через толщину и показатель преломления пленки. Без вывода, но объяснением физического смысла всех членов) A :
Q : 20 . Вид интерференционной картины в случае плоскопараллельной пластины, клина, сферической линзы, лежащей на пластине (Словесное описание или эскиз. Особенности картин.). A :
Q : 21 . Принцип Гюйгенса Френеля (Определение, примеры для отверстия, экрана). A :
Q: 22. Интеграл Фраунгофера (без вывода, но объяснением физического смысла всех членов). A:
Q : 23 . Решение интеграла Фраунгофера для узкой щели (без вывода, но

объяснением физического смысла всех членов).

A :
Q: 24. Условие минимумов при дифракции на щели (без вывода, но объяснением физического смысла всех членов). A:
Q : 25 . Вид решения для круглого отверстия (без вывода, но объяснением физического смысла всех членов). A :
Q : 26 . Условие максимумов при дифракции на решетке (без вывода, но объяснением физического смысла всех членов). A :
Q : 27 . Разрешающая способность диф. решетки (без вывода, но объяснением физического смысла всех членов). A :
Q: 28. Линейная поляризация(определение). A:
Q : 29 . Закон Малюса (без вывода, но объяснением физического смысла всех членов). A :
Q : 30 . Степень поляризации (без вывода, но объяснением физического смысла всех членов). A :
Q: 31. Эллиптическая поляризация(определение). A:

Q: 32. Двулучепреломление в кристаллах. Обыкновенный и необыкновенный луч. (Определение, причины нарушения законов геом. оптики.)
A:
Q: 33. Полуволновые и четверть волновые пластины (принцип работы с примерами).
A:
Q: 34. Формулы Френеля для в и р поляризации (без вывода, но объяснением физического смысла всех членов).
A:
Q: 35. Что называется углом Брюстера?
A:
О: 36. Как связан угол Брюстера с показателями преломления среды из

Q: **36**. Как связан угол Брюстера с показателями преломления среды, из которой падает волна и показателем преломления среды, в которую волна проходит.

A: