Электромагнетизм

Электростатика

Q: 1. Что такое электрический заряд?

А: Электрический заряд - это физическая скалярная величина, показывающая способность тел быть источником электромагнитных полей и принимать участие в электромагнитном взаимодействии. Минимальная величина электрического заряда e (т.н. элементарный заряд) приблизительно равна $1.6 \cdot 10^{-19}$ Кл (Кл - кулон). Такими зарядами обладают, например, электрон и протон -e и +e. Заряд любого тела можно представить в виде: $q = \pm Ze$, где Z - целое число.

Q: **2**. Сформулируйте закон Кулона.

А: Закон взаимодействия неподвижных точечных зарядов был установлен экспериментально Шарлем Огюстеном де Кулоном в 1785 году. Этот закон может быть записан в виде формулы:

$$ec{F}_{12} = k rac{q_1 q_2}{|ec{r}_{12}|^3} ec{r}_{12},$$

где \vec{F}_{12} - сила, действующая со стороны первого заряда на второй; \vec{r}_{12} - вектор, направленный по прямой, соединяющий заряды в направлении от первого ко второму; q_1,q_2 - величины взаимодействующих зарядов с учетом знаков; k - коэффициент пропорциональности, зависящий от выбранной системы единиц.

В системе SI: $k=\frac{1}{4\pi\varepsilon_0}\approx 9\cdot 10^9\,$ м/Ф (Ф - фарад). Величина $\varepsilon_0\approx 0.885\cdot 10^{-11}\,$ Ф/м называется электрической постоянной.

Q: 3. Дайте определение напряженности электрического поля.

А: Силовой характеристикой электрического поля является напряженность $\vec{E} = \vec{E}(\vec{r})$. Для определения напряженности в некоторой области пространства следует поместить в каждую точку этой области с радиус-вектором \vec{r} пробный заряд q'. Тогда $\vec{E}(\vec{r})$ определяется по формуле:

$$\vec{E}(\vec{r}) = \frac{\vec{F}(\vec{r})}{q'}$$

где $\vec{F}(\vec{r})$ - сила, действующая на пробный заряд. Она зависит от q'. Если q' велико, то при внесении заряда q' будут соответственно изменяться положения зарядов, создающих поле \vec{E} . Но если q' достаточно мало, то искажение поля будет незначительным и $\vec{E}(\vec{r})$, определяемое по написанной выше формуле, перестает зависеть от q' - становится характеристикой невозмущенного поля.

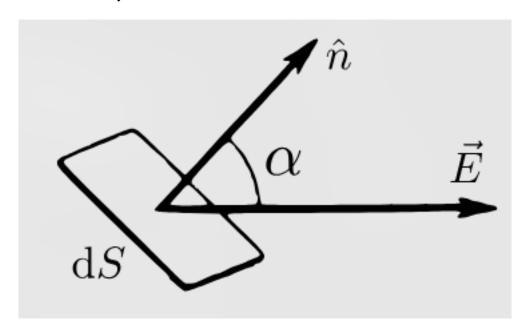
По размерности [E] = B/м (вольт/метр), но его можно измерять и в единицах H/Кл (ньютон/кулон).

Q: **4**. По какой формуле вычисляется напряженность электрического поля точечного заряда?

А: Из определения напряжения электрического поля можно получить выражение для поля точечного заряда (для напряженности в произвольной точке). Для этого заменяем в законе Кулона: $q_1 = q, \; q_2 = q'$ и получим:

$$\vec{E} = k \frac{q}{r^2} \cdot \frac{\vec{r}}{r}.$$

 \mathbf{Q} : 5. Сформулируйте принцип суперпозиции для вектора $ec{E}$.


А: Из свойства электрического поля (независимость взаимодействий заядов) следует принцип суперпозиции (наложения) электрических полей: $\vec{E}(\vec{r}) = \sum \vec{E}_i(\vec{r})$, где $\vec{E}_i(\vec{r})$ - напряженность в точке \vec{r} , создаваемая i-й частью системы зарядов назависимо от наличия других частей. Для системы точечных зарядов формула выше переходит в

$$\vec{E} = k \sum \frac{q_i}{r_i^2} \cdot \frac{\vec{r}_i}{r_i}$$

где \vec{r}_i - радиус-вектор, проведенный из точки нахождения заряда в интересующую нас точку.

 ${f Q}$: 6. Дайте определение потока вектора ec E.

А: Поток вектора \vec{E} . Для удобства представим, что густота силовых линий равна E. Тогда число линий, пронизывающих площадку dS (см. рис.) с нормалью \vec{n} равна $EdS\cos\alpha$. Это число равно потоку $d\Phi$ вектора \vec{E} сквозь площадку dS.

Если ввести вектор ж

Q: 7. Сформулируйте теорему Гаусса в интегральной форме.

A:

Q: 8. Сформулируйте теорему Гаусса в дифференциальной форме.

A:

 \mathbf{Q} : 9. B чем заключается физический смысл $div \vec{E}$?

A:

 \mathbf{Q} : 10. Дайте определение циркуляции вектора $ec{E}$.

A:

 \mathbf{Q} : 11. Сформулируйте теорему о циркуляции вектора \vec{E} ?

A :
Q: 12. Дайте определение потенциального поля. A:
${f Q}$: 13. Докажите, что линии электростатического поля $ec E$ не могут быть замкнутыми.
Q: 14. По какой формуле можно определить потенциальную энергию системы точечных зарядов? A:
Q: 15. Дайте определение потенциалов. A:
Q: 16. Чему равен потенциал системы точечных зарядов? A:
${f Q}$: 17. Чему равен потенциал в случае непрерывного распределения заряда плотностью $ ho$?
${f Q}$: 18 . Сформулировать теорему о циркуляции поля $ec E$ в дифференциальной форме. ${f A}$:
${f Q}$: 19 . Как связаны между собой напряженность электростатического поля $ec E$ и его потенциал? ${f A}$:

Q : 20 . Что такое эквипотенциальная поверхность?
A :
${f Q}$: 21 . Как расположены друг относительно друга эквипотенциальные поверхности и силовые линии поля \vec{E} ?
Q: 22. Дайте определение электрического диполя. A:
Q: 23. Что такое электрический дипольный момент? A:
Q: 24. Как найти момент сил, действующих на диполь? A:
Q: 25. Какие молекулы называют полярными? Неполярными? A:
Q: 26. Опишите процесс поляризации диэлектрика. A:
Q: 27. Какие заряды называют связанными? Сторонними? A:
${f Q}$: 28 . Дайте определение поляризованности ${ec P}$.
Q: 29. Что такое диэлектрическая восприимчивость вещества? A:

${f Q}$: ${f 30}$. Дайте определение вектора ${f ec D}$. ${f A}$:
${f Q}$: 31 . Интегральная форма теоремы Гаусса для вектора $ec D$. ${f A}$:
${f Q}$: 32 . Дифференциальная форма теоремы Гаусса для вектора $ec D$. ${f A}$:
Q: 33. Какие диэлектрики называют изотропными? A:
${f Q}$: ${f 34}$. Как связаны между собой \vec{P} и \vec{E} в изотропных диэлектриках? ${f A}$:
${f Q}$: 35 . Как связаны между собой \vec{D} и \vec{E} в изотропных диэлектриках? ${f A}$:
Q : 36 . Докажите, что внутри проводника, внесенного во внешнее электрическое поле, отсутствуют избыточные заряды. A :
Q: 37. Чему равна напряженность электрического поля у поверхности проводника?A:
Q : 38 . Дайте определение емкости уединенного проводника. A :
Q : 39 . Что такое конденсатор?

A :
Q : 40 . Дайте определение емкости конденсатора. A :
Q : 41 . Как вычислить емкость батареи конденсаторов при последовательном соединении? При параллельном? A :
Q : 42 . По каким формулам вычисляете энергия электрического поля? A :
Q : 43 . Как вычислить работу при поляризации диэлектрика? A :

Постоянный электрический ток

Q: 1. Что такое электрический ток?
A :
Q: 2. Дайте определение плотности тока. A:
Q : 3 . Сформулируйте уравнение непрерывности (в интегральной форме) A :
Q : 4 . Сформулируйте уравнение непрерывности (в дифференицальной форме). A :
Q : 5 . Сформулируйте закон Ома для однородного проводника. A :
Q : 6 . Сформулируйте закон Ома в локальном виде. A :
Q : 7. Что такое сторонние силы? A :
Q : 8 . Сформулируйте обобщенный закон Ома в локальной форме. A :
Q : 9 . Сформулируйте закон Ома для неоднородного участка цепи. A :
Q : 10 . Сформулируйте закон Джоуля-Ленца (для однородного участка

цепи).

A:

Q: **11**. Сформулируйте закон Джоуля-Ленца в локальной форме для однородного участка цепи.

A:

Q: **12**. Сформулируйте закон Джоуля-Ленца для неоднородного участка цепи.

A:

Магнитное поле. Электромагнитная индукция

Q: 1. Дайте определение силы Лоренца. A:
${f Q}$: 2. Что такое вектор $ec B$? ${f A}$:
${f Q}$: 3. Сформулируйте принцип суперпозиции для вектора ${f \vec{B}}$? ${f A}$:
Q : 4 . Сформулируйте закон Био-Савара-Лапласа. A :
${f Q}$: 5 . Найдите поле $ec B$ прямого тока. ${f A}$:
Q: 6. Какую силу называют силой Ампера? A:
Q : 7. Дайте определение магнитного момента. A :
${f Q}$: 8. Сформулируйте теорему Гаусса для вектора ${f B}$.
Q : 9 . В чем заключается механизм намагничения? A :
${f Q}$: 10. Дайте определение намагниченности ${f J}$.

Q : 11 . Какие токи называют молекулярными? A :
Q: 12. Какие токи называют поверхностными токами намагничивания? A:
Q: 13. Какие токи называют объемными токами намагничивания? A:
${f Q}$: 14. Дайте определение вектора $ec H$.
${f Q}$: 15 . Сформулируйте теорему о циркуляции вектора ${f H}$ (в интегральной и дифференциальной форме). ${f A}$:
${f Q}$: 16. Связь между ${f J}$ и ${f H}$? Между ${f B}$ и ${f H}$?
Q : 17 . В чем заключается явление электромагнитной индукции? A :
Q: 18. Дайте определение ЭДС индукции. A:
Q : 19 . Сформулируйте правило Ленца. A :
Q : 20 . Какие токи называют токам Фуко?

A:

Q: **21**. Сформулируйте закон электромагнитной индукции.

A:

Уравнения Максвелла

Q : 1 . Дайте определение тока смещения.
A :
Q: 2. Дайте определение полного тока. A:
${f Q}$: 3. Сформулируйте теорему о циркуляции вектора \vec{H} в случае произвольных токов (в интегральной и дифференциальной форме). ${f A}$:
Q : 4 . Сформулируйте уравнения Максвелла. A :
Q : 5 . В чем заключается содержание этих уравнений? A :

Оптика

Q : 1 . Уравнения Максвелла в интегральной форме (без вывода, но объяснением физического смысла всех членов).
\mathbf{A} :
Q: 2. Уравнения Максвелла в дифференциальной форме (без вывода, но объяснением физического смысла всех членов). A:
Q : 3 . Уравнения Максвелла в интегральной форме для случая отсутствия токов и зарядов (без вывода, но объяснением физического смысла всех членов).
A:
Q : 4 . Уравнения Максвелла в дифференциальной форме для случая отсутствия токов и зарядов (без вывода, но объяснением физического смысла всех членов). A :
Q : 5 . Волновое уравнение (без вывода, но объяснением физического смысла всех членов).
A:
Q : 6 . Уравнение плоской ЭМ волны (без вывода, но объяснением физического смысла всех членов). A :
Q : 7. Волновое число и волновой вектор (Определение. Направление. Формула).
A :

${f Q}$: 8 . Волновой фронт (Определение. Примеры (сферический и плоский $B\Phi$)).
A :
Q : 9 . Показатель преломления среды (формула 1 через скорость света и фазовую скорость, формула 2 через проницаемости).
A :
Q : 10 . Вектор Пойнтинга (формула без вывода, но объяснением физического смысла всех членов).
A :
Q : 11 . Интенсивность ЭМ излучения (Размерность. Выражение через квадрат амплитуды.).
\mathbf{A} :
Q : 12 . Двухлучевая интерференция (Формула 1 через амплитуды и формула 2 через интенсивности).
A:
Q : 13 . Связь разности хода и разности фаз (формула, с объяснением физического смысла всех членов).
A:
Q : 14 . Условие максимума через разность хода и разность фаз (формула, с объяснением физического смысла всех членов).
A:
Q : 15 . Условие минимума через разность хода и разность фаз (формула, с объяснением физического смысла всех членов).
A :

Q : 16 . Видность интерференционной картины (формула, с объяснением физического смысла всех членов).
A:
Q : 17 . Ширина интерференционной полосы на примере схемы Юнга (ШИП выражается через параметры схемы. Без вывода, но объяснением физического смысла всех членов). A :
Q : 18 . Время и длина когерентности (Определение. Формула без вывода.). A :
Q : 19 . Разность хода при интерференции в тонких пленках (Формула через толщину и показатель преломления пленки. Без вывода, но объяснением физического смысла всех членов)
\mathbf{A} :
Q : 20 . Вид интерференционной картины в случае плоскопараллельной пластины, клина, сферической линзы, лежащей на пластине (Словесное описание или эскиз. Особенности картин.). A :
Q : 21 . Принцип Гюйгенса Френеля (Определение, примеры для отверстия, экрана).
A:
Q : 22 . Интеграл Фраунгофера (без вывода, но объяснением физического смысла всех членов).
A:
Q : 23 . Решение интеграла Фраунгофера для узкой щели (без вывода, но

объяснением физического смысла всех членов).

A :
Q: 24. Условие минимумов при дифракции на щели (без вывода, но объяснением физического смысла всех членов). А:
Q : 25 . Вид решения для круглого отверстия (без вывода, но объяснением физического смысла всех членов). A :
Q : 26 . Условие максимумов при дифракции на решетке (без вывода, но объяснением физического смысла всех членов). A :
Q: 27. Разрешающая способность диф. решетки (без вывода, но объяснением физического смысла всех членов). А:
Q: 28. Линейная поляризация(определение). A:
Q : 29 . Закон Малюса (без вывода, но объяснением физического смысла всех членов). A :
Q: 30. Степень поляризации (без вывода, но объяснением физического смысла всех членов). A:
Q: 31. Эллиптическая поляризация(определение). A:

Q: 32. Двулучепреломление в кристаллах. Обыкновенный и необыкновенный луч. (Определение, причины нарушения законов геом. оптики.)
A:
Q: 33. Полуволновые и четверть волновые пластины (принцип работы с примерами).
A:
Q: 34. Формулы Френеля для в и р поляризации (без вывода, но объяснением физического смысла всех членов).
A:
Q: 35. Что называется углом Брюстера?
A:
О: 36. Как связан угол Брюстера с показателями преломления среды, из

Q: **36**. Как связан угол Брюстера с показателями преломления среды, из которой падает волна и показателем преломления среды, в которую волна проходит.

A: