Домашняя работа №7

1. Две игральные кости одновременно бросают два раза. Составить ряд и функцию распределения $CB \, \xi$ - число выпадений числа очков кратного 3. Указать вид закона распределения.

Решение:

$$p = P$$
(число кратно $3) = \frac{2}{6} = \frac{1}{3}$

Бросаем 2 кости одновременно:

Случайная величина: количество "кратных 3" на двух костях.

- 0 кратных 3: обе кости не кратны 3 $\rightarrow (1-p)^2 = \left(\frac{2}{3}\right)^2 = \frac{4}{9}$
- 1 кратных 3: обе кости кратны $3 \to 2 \cdot p \cdot (1-p) = 2 \cdot \frac{1}{3} \cdot \frac{2}{3} = \frac{4}{9}$ 2 кратных 3: обе кости кратны $3 \to p^2 = \left(\frac{1}{3}\right)^2 = \frac{1}{9}$

То есть на одном броске две кости дают распределение:

k	0	1	2
P	$\frac{4}{9}$	$\frac{4}{9}$	$\frac{1}{9}$

Бросаем два раза

Пусть ξ = общее число выпадений "кратных 3" за два броска двух костей.

- Каждый бросок даёт случайную величину X(0,1,2) с вероятностями $(\frac{4}{9},\frac{4}{9},\frac{1}{9})$.
- Всего два броска \rightarrow независимые величины X_1 и X_2 .
- Тогда $\xi = X_1 + X_2$.

Максимум: 2+2=4, минимум: $0+0=0 \to$ возможные значения $\xi=0,1,2,3,4$.

Ряд распределения

Вероятности для суммы $\xi = X_1 + X_2$:

- $\begin{array}{l} \bullet \ P(\xi=0) = P(X_1=0 \ \ \text{m} \ \ X_2=0) = \frac{4}{9} \cdot \frac{4}{9} = \frac{16}{81} \\ \bullet \ P(\xi=1) = P(X_1=0, X_2=1) + P(X_1=1, X_2=0) = \frac{4}{9} \cdot \frac{4}{9} + \frac{4}{9} \cdot \frac{4}{9} = \frac{32}{81} \\ \bullet \ P(\xi=2) = P(X_1=0, X_2=2) + P(X_1=1, X_2=1) + P(X_1=2, X_2=0) = \frac{4}{9} \cdot \frac{1}{9} + \frac{4}{9} \cdot \frac{4}{9} + \frac{1}{9} \cdot \frac{4}{9} = \frac{4+16+4}{81} = \frac{24}{81} \\ \bullet \ P(\xi=3) = P(X_1=1, X_2=2) + P(X_1=2, X_2=1) = \frac{4}{9} \cdot \frac{1}{9} + \frac{1}{9} \cdot \frac{4}{9} = \frac{8}{81} \\ \bullet \ P(\xi=4) = P(X_1=2, X_2=2) = \frac{1}{9} \cdot \frac{1}{9} = \frac{1}{81} \end{array}$

Итого:

ξ	0	1	2	3	4
P	$\frac{16}{81}$	$\frac{32}{81}$	$\frac{24}{81}$	$\frac{8}{81}$	$\frac{1}{81}$

Функция распределения $F_{\xi}(x) = P(\xi \le x)$

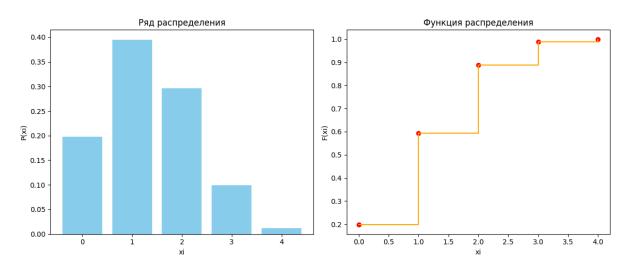
x	$F_{\xi}(x)$
0	$\frac{16}{81}$
1	$\frac{48}{81}$
2	$\frac{72}{81}$

3	$\frac{80}{81}$
4	1

Вид закона распределения

Это дискретная сумма двух независимых случайных величин с биномиальным распределением, но каждая из них сама является распределением суммы двух независимых Бернулли с $p=\frac{1}{3} \to$ сводится к многократной биномиальной схеме (мультибиномиальный).

Говоря проще: ξ — дискретная, конечная, суммируемая случайная величина, аналогичная сумме 4 Бернулли с $p=\frac{1}{3}$ (так как всего за два броска 2 кости \to 4 "испытывания").



2. В партии из 10 деталей 8 стандартных. Наудачу отобраны 2 детали. Составить ряд и функцию распределения СВ ξ - число стандартных среди отобранных. Указать вид закона распределения.

$$P(X = k) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}$$

где k = 0, 1, 2.

Вычисляем вероятности

• k = 0 (0 стандартных деталей):

$$P(X=0) = \frac{\binom{8}{0}\binom{2}{2}}{\binom{10}{2}} = \frac{1 \cdot 1}{45} = \frac{1}{45}$$

• k = 1 (1 стандартная деталь):

$$P(X=1) = \frac{\binom{8}{1}\binom{2}{1}}{\binom{10}{2}} = \frac{8 \cdot 2}{45} = \frac{16}{45}$$

• k = 2 (2 стандартные детали):

$$P(X=2) = \frac{\binom{8}{2}\binom{2}{0}}{\binom{10}{2}} = \frac{28 \cdot 1}{45} = \frac{28}{45}$$

Ряд распределения

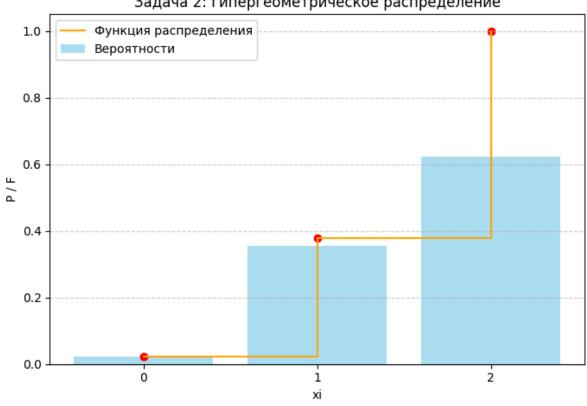
ξ	0	1	2	
P	$P \mid \frac{1}{45}$		$\frac{28}{45}$	

Функция распределения $F_{\xi}(x) = P(\xi \le x)$

x	$F_{\xi}(x)$
0	$\frac{1}{45}$
1	$\frac{17}{45}$
2	1

Вид закона распределения

Это гипергеометрическое распределение, так как выборка делается без возвращения из конечной совокупности объектов с двумя типами элементов.



Задача 2: гипергеометрическое распределение

3. Экзаменатор задает студенту дополнительные вопросы до тех пор, пока не обнаружит незнание. Вероятность ответа на один дополнительный вопрос равна 0.9. Составить ряд: a) $CB \xi$ - число заданных вопросов; b) $CB \xi$ - число заданных вопросов, если их не более 5. Указать вид закона распределения.

а) Число заданных вопросов (ξ неограничено)

Это классическая задача на геометрическое распределение:

 $P(\xi = k) = P($ первые k-1 ответы правильные, k-й неправильный)

• Вероятность неправильного ответа: q=1-p=0.1

• Тогда:

$$P(\xi = k) = p^{k-1} \cdot q, \quad k = 1, 2, 3, \dots$$

Ряд распределения:

ξ	1	2	3	4	5
	P	0.1	0.09	0.081	0.0729
0.06561					

Функция распределения:

$$F_{\varepsilon}(k) = P(\xi \le k) = 1 - p^k$$

Например:

$$F_{\!\xi}(1) = 0.1, \quad F_{\!\xi}(2) = 0.1 + 0.09 = 0.19, \dots$$

Вид закона распределения: дискретное, геометрическое распределение.

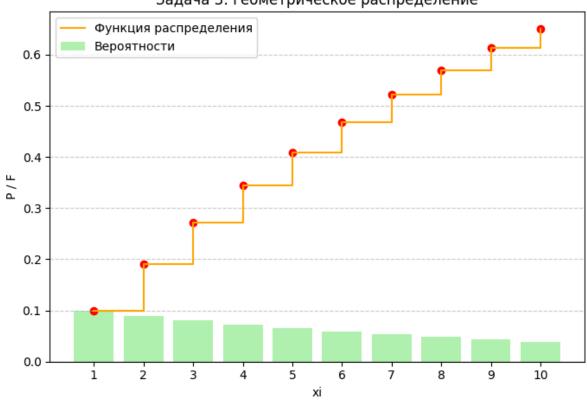
b) Число заданных вопросов, если их не более 5

Теперь ограничиваемся максимум 5 вопросами. Тогда для k=1,2,3,4,5:

$$P(\xi=k) = \begin{cases} p^{k-1}q \;,\;\; k=1,\,2,\,3,\,4 \\ p^4 \;,\;\; k=5 (\text{т.e. все 5 правильных}) \end{cases}$$

ξ	1	2	3	4	5
P	0.1	0.09	0.081	0.0729	0.6561

Вид закона распределения: дискретное усечённое геометрическое распределение.



Задача 3: геометрическое распределение

4. Устройство состоит из 1000 элементов, работающих независимо друг от друга. Вероятность отказа любого из них за время T равна 0.002. Составить ряд ${\bf CB}\,\xi$ - число отказавших элементов за время Т. Указать вид закона распределения.

Каждый элемент — это независимая «Биномиальная попытка»:

$$X_i = egin{cases} 1, \ ext{элемент отказал} \ 0, \ ext{элемент не отказал} \end{cases}$$

Тогда $\xi = X_1 + X_2 + ... + X_{1000}$.

Это биномиальная случайная величина с параметрами n=1000, p=0.002:

$$P(\xi=k) = \binom{1000}{k} p^k (1-p)^{1000-k}, \quad k=0,1,...,1000$$

Приближение

Так как n большое, p маленькое, удобно использовать приближение Пуассона:

$$\lambda = n \cdot p = 1000 \cdot 0.002 = 2$$

Тогда можно приближённо считать:

$$P(\xi=k)\approx \frac{\lambda^k e^{-\lambda}}{k!}=\frac{2^k e^{-2}}{k!}, \quad k=0,1,2,\dots$$

Это распределение Пуассона с параметром $\lambda=2$.

Ряд распределения (первые значения)

$$\begin{split} P(\xi=0) &\approx \operatorname{frac}\{2^0 e^{-2}, 0!\} = e^{-2} \approx 0.1353 \\ P(\xi=1) &\approx \operatorname{frac}\{2^1 e^{-2}, 1!\} = 2 e^{-2} \approx 0.2707 \\ P(\xi=2) &\approx \operatorname{frac}\{2^2 e^{-2}, 2!\} = 2 e^{-2} \approx 0.2707 \\ P(\xi=3) &\approx \operatorname{frac}\{2^3 e^{-2}, 6\} \approx 0.1804 \\ P(\xi=4) &\approx \operatorname{frac}\{16 e^{-2}, 24\} \approx 0.0902 \\ P(\xi=5) &\approx \operatorname{frac}\{32 e^{-2}, 120\} \approx 0.0361 \end{split}$$

Вид закона распределения

- Точное: биномиальное B(n=1000,p=0.002)
- Приближённое: распределение Пуассона с параметром $\lambda=2$

Это классический пример редких событий (малое p, большое n) — удобно использовать Пуассона.

