ПРОСТРАНСТВО СЛУЧАЙНЫХ СОБЫТИЙ

Тема # 2

ВЕРОЯТНОСТНОЕ ПРОСТРАНСТВО

- классическое определение вероятности;
- геометрическое определение вероятности;
- статистическое определение вероятности;
- аксиоматическое определение вероятности;
- вероятность на пространствах элементарных исходов;
- и вот оно вероятностное пространство!

Тема # 02. Вероятностное пространство

о классическое определение вероятности

Что вероятнее при подбрасывании – выпадение герба на монете или пятерки на ребре игрального кубика?

Очевидно, что Ω дискретно и для того, чтобы можно было обоснованно ответить на поставленный вопрос, каждому событию $A \subseteq \Omega$ хотелось бы поставить в соответствие некоторое число P(A), которое характеризовало бы меру возможности наступления этого события в ходе проведения нашего эксперимента или опыта.

Определение вероятности события как меры возможности его наступления имеет аксиоматическую основу, которая становится более понятна и естественна если к ней подходить в хронологическом порядке определения вероятности события.

Определение 1 (классическое определение вероятности (КОВ))

Пусть $|\Omega|=n$ – число равновозможных исходов, а n(A) – число исходов благоприятствующих событию $A\subseteq\Omega$, тогда

$$P(A) = \frac{n(A)}{n}.$$

Свойства КОВ:

- $\forall A \subseteq \Omega \to P(A) \geqslant 0$, при этом $P(\varnothing) = 0$, $P(\Omega) = 1$;
- ② P(A+B) = P(A) + P(B) если A и B несовместны ($AB = \varnothing$). Действительно,

$$P(A) + P(B) = \frac{n(A)}{n} + \frac{n(B)}{n} = \frac{n(A) + n(B)}{n} = P(A + B).$$

Если же $AB \neq \varnothing$, тогда $P(A \cup B) = P(A) + P(B) - P(AB)$.

И некоторые следствия: 1) $P(\bar{A}) = 1 - P(A);$ 2) $P(A) < P(B) \Rightarrow A \subset B.$

<u>Примечание!!!</u> Опыт удовлетворяющий условию равновозможности исходов, часто называют "классической схемой" .

Пример 2.1 ▶ В корзине 100 пирожков с 5 видами начинки: 15 шт. с вишней (В), 10 шт. с мясом (М), 25 шт. с капустой (К), 30 шт с луком и яйцо (Л&Я) и 20 шт. с щавелем (Щ). Пирожки извлекаются из корзины случайным образом.

1) Какова вероятность извлечь пирожок с щавелем?

Ответ:
$$P(\text{Щ}) = 0.2;$$

2) Какова вероятность извлечь пирожок с яйцом и луком или с капустой?

Решение:
$$P(\Pi \& \Pi + K) = \frac{30+25}{100} = 0.55;$$

3) Какова вероятность извлекая два пирожка поочередно извлечь пирожок с вишней, а затем пирожок с мясом?

Решение:
$$P(BM) = \frac{15}{100} \cdot \frac{10}{99} = \frac{150}{9900} = \frac{1}{66}$$
;

4) Какова вероятность извлекая два пирожка поочередно получить один пирожок с вишней, а другой с мясом?

Решение:
$$P(BM + MB) = \frac{15}{100} \cdot \frac{10}{99} + \frac{10}{100} \cdot \frac{15}{99} = \frac{300}{9900} = \frac{1}{33}$$
.

Тема # 02. Вероятностное пространство

о геометрическое определение вероятности

Геометрическое определение вероятности обобщает классическое на случай бесконечного множества элементарных исходов тогда, когда представляет собой подмножество пространств: \mathbb{R} , \mathbb{R}^2 или \mathbb{R}^n (n-мерное евклидово пространство).

Будем также считать, что пространство элементарных исходов Ω имеет конечную меру, а вероятность попадания "случайно брошенной" точки в любое подмножество Ω пропорциональна мере этого подмножества и не зависит от его расположения и формы. В этом случае говорят, что рассматривается

"геометрическая схема" или "точку наудачу бросают в область".

Определение 2 (геометрическое определение вероятности (ГОВ))

Вероятностью события A называют число P(A), равное отношению меры множества A (величины $\mu(A)$) к мере множества Ω (величины $\mu(\Omega)$):

$$P(A) = \frac{\mu(A)}{\mu(\Omega)}.$$

Тема # 02. Вероятностное пространство

о геометрическое определение вероятности

Замечание:

Приведенное определение ГОВ с математической точки зрения не является корректным, поскольку в п-мерном пространстве существуют подмножества, не имеющие меры. Поэтому для строгости необходимо в качестве событий A рассматривать только элементы борелевской σ -алгебры \mathcal{B} .

Пример 2.2 ▶ Ромео и Джульетта договорились встретиться в определенном месте между двенадцатью часами и часом дня.

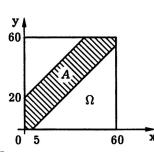
Необходимо найти вероятность встречи, если приход каждого из них в течение указанного часа происходит наудачу, причем известно, что Ромео ждет Джульетту ровно 20 минут, а Джульетта Ромео - 5 минут.

Решение: Из условий ожидания составляем систему

$$\begin{cases} y - x \leqslant 20, \\ x - y \leqslant 5; \end{cases}$$

область элементарных исходов, которые благоприятствуют встрече заштрихована и обозначена как A. Тогда

$$P(A) = \frac{S_A}{S_{\Omega}} = \frac{1287.5}{3600} \approx 0.36.$$



о статистическое определение вероятности

Пусть произведено n повторений опыта, причем n(A) раз появилось событие A. Тогда $r_A = n(A)/n$ – наблюдаемая частота события A. Практика показывает, что в тех экспериментах, для которых применимы методы теории вероятностей, частота события A с увеличением числа опытов $(n \to \infty)$ стабилизируется.

Определение 3 (статистическое определение вероятности (СОВ))

Вероятностью события A называют (эмпирический) предел, к которому стремится частота r_A события A при неограниченном увеличении числа опытов:

$$P(A) = \lim_{n \to \infty} \frac{n(A)}{n}$$

Очевидным образом в СОВ наследуются свойства КОВ (также как и в ГОВ):

$$1)\;P(A)\geqslant 0,\quad 2)\;P(\Omega)=1,\quad 3)\;P(A+B)=P(A)+P(B),\;\text{если}\;AB=\varnothing.$$

С практической точки зрения СОВ является наиболее разумным. Однако с позиции современной математики недостаток СОВ очевиден: нельзя провести бесконечное число повторений опыта, а при конечном числе повторений наблюденная частота, естественно, будет разной при различном числе повторений.

Согласно классической схеме $\forall A \subseteq \Omega$ будет справедливым, что $P(A) = \sum_{\omega_i \in A} P(\omega_i)$.

Однако задать вероятность события по такому принципу в случае геометрической схемы нельзя, т. к. для любого элементарного события вероятность равна нулю.

Требуется универсальное определение, отвечающее всем рассмотренным схемам.

Определение 4 (аксиоматическое определение вероятности (АОВ))

Пусть каждому событию $A \subseteq \Omega$ принадлежащему σ -алгебре \mathcal{B}) поставлено в соответствие число P(A). Числовую функцию P (заданную на σ -алгебре \mathcal{B}) называют вероятностью (или вероятностной мерой), если она удовл. аксиомам:

- **①** Аксиома неотрицательности: $P(A) \geqslant 0$;
- ② Аксиома нормированности: $P(\Omega) = 1;$
- **③** Расширенная аксиома сложения: для любых попарно несовместных событий A_1,\ldots,A_n,\ldots справедливо, что $P(A_1+\ldots+A_n+\ldots)=P(A_1)+\ldots+P(A_n)+\ldots$

Замечание 1 к АОВ:

Если Ω дискретно (конечно или счетно), то каждому элементарному исходу $\omega_i \in \Omega$ где $i=1,2,\ldots$, можно поставить в соответствие число $P(\omega_i)=p_i\geqslant 0$ так, что

$$\sum_{\omega_i \in \Omega} P(\omega_i) = \sum_{i=1}^{\infty} p_i = 1.$$

Тогда $\forall A \subset \Omega$ в силу расширенной аксиомы сложения (аксиома 3) имеем

$$P(A) = \sum_{\omega_i \in A} P(\omega_i).$$

Таким образом, мы определили вероятность любого события, используя вероятности элементарных исходов. Заметим, что вероятности элементарных исходов можно задавать совершенно произвольно, лишь бы они были неотрицательными и в сумме составляли единицу. Именно в этом и состоит идея аксиоматического определения вероятности.

Замечание 2 к АОВ:

Иногда вместо аксиомы 3 (расширенная аксиома сложения) используют две другие аксиомы, которые в совокупности своей равносильны аксиоме 3:

Аксиома сложения: для любых попарно непересекающихся событий A_1, \dots, A_n справедливо равенство

$$P(A_1 + \ldots + A_n) = P(A_1) + \ldots P(A_n)$$
 или $P\left(\sum_{i=1}^n A_i\right) = \sum_{i=1}^n P(A_i).$

Аксиома непрерывности: если последовательность событий A_1,\dots,A_n,\dots такова, что $A_n\subset A_{n+1}, n\in\mathbb{N},$ и $A_1\cup\dots\cup A_n\cup\dots=A,$ тогда

$$\lim_{n \to \infty} P(A_n) = P(A).$$

Свойства вероятности:

- **1** Вероятность противоположного события: $P(\bar{A}) = 1 P(A)$;
- **2** Вероятность невозможного события: $P(\emptyset) = 0$;

теоремы сложения вероятностей:

- **6** Вероятность объединения двух событий: $P(A \cup B) = P(A) + P(B) P(AB)$;
- Вероятность объединения любого конечного числа событий

$$P(A_1 \cup \ldots \cup A_n) = \sum_{i=1}^n P(A_i) - P(A_1 A_2) - P(A_1 A_3) - \ldots - P(A_{n-1} A_n) + P(A_1 A_2 A_3) + \ldots + (-1)^{n+1} P(A_1 A_2 \ldots A_n)$$

Покажем, как конструктивно можно задать вероятность для некоторых наиболее часто встречающихся на практике пространств элементарных исходов, содержащих бесконечное число элементарных исходов.

Пусть Ω содержит счетное множество элементарных исходов $\omega_1,\ldots,\omega_n,\ldots$ В этом случае любую вероятностную меру P можно получить, задав вероятности

$$p_1 = P(\omega_1), \ldots, p_n = P(\omega_n), \ldots$$

элементарных исходов, где последовательность p_1,\ldots,p_n должна удовлетворять только условиям неотрицательности

$$p_i \geqslant 0, \qquad i \in \mathbb{N},$$

и нормированности

$$p_1+\ldots+p_n+\ldots=1,$$

то есть $\sum_{i=1}^{\infty} p_i$ является знакоположительным числовым рядом, сумма которого равна единице. Вероятность любого события A равна сумме вероятностей всех входящих в A элементарных исходов ω_i .

Предположим теперь, что $\Omega=(-\infty;+\infty)$ с борелевской σ -алгеброй на ней. Для задания вероятностной меры на числовой прямой можно взять произвольную неубывающую для любого $x\in\mathbb{R}$ непрерывную слева функцию F(x), удовлетворяющую условиям

$$F(-\infty) = \lim_{x \to -\infty} F(x) = 0 \qquad \text{if} \qquad F(+\infty) = \lim_{x \to +\infty} F(x) = 1,$$

и каждому событию $A_x = (-\infty, x)$ поставить в соответствие

$$P(A_x) = F(x),$$

а событию $A = [x_1, x_2)$ — вероятность

$$P(A) = F(x_2) - F(x_1).$$

Найденная таким образом для всех событий $A = [x_1, x_2)$ числовая функция P(A) будет удовлетворять аксиомам AOB.

о и вот оно − вероятностное пространство!

Определение 5 (вероятностное пространство)

Тройку (Ω, \mathcal{B}, P) состоящую из пространства элементарных исходов Ω , с σ -алгеброй событий \mathcal{B} и определенной на \mathcal{B} вероятности P, называют вероятностным пространством.