Задания ЛР1. Команда 3

Тема 1. Непосредственный подсчет вероятностей в рамках классической схемы. Теоремы сложения и умножения вероятностей.

3. Цифры от 1 до 9 располагаются в случайном порядке. Какова вероятность того, что все нечетные цифры окажутся на нечетных местах?

Решение: мы можем расставить 9 цифр на 9 местах 9! способами. 5 нечетных цифр на 5 нечетных позициях 5! способами. 4 четных цифры на 4 четных позиции 4! способами. То есть совместное количество способов $4! \cdot 5! = 2880$.

Итоговая вероятность:

$$P = \frac{2880}{362880} = \frac{1}{126}$$

Ответ: $\frac{1}{126}$

13. Обезьяна выкладывает карточки с буквами **К, Р, О, К, О, Д, И,** Л в ряд в случайном порядке. Какова вероятность того, что у нее получится выложить слово **КРОКОДИ**Л?

Решение: Всего 8 букв, но буквы 'К' и 'О' повторяются по 2 раза каждая. Тогда по формуле для количества перестановок с повторяющимися элементами:

$$\frac{8!}{2! \cdot 2!} = \frac{40320}{4} = 10080$$

Так как нам нужна одна конкретная комбинация, то получим:

$$P = \frac{1}{10080}$$

Ответ: $\frac{1}{10080}$

Тема 2. Геометрические вероятности.

3. В центре стола, имеющего форму эллипса с полуосями a и b, распололжен магнит. На стол случайным образом бросается булавка, которая притягивается магнитом, если расстояние между ними не превосходит числа $r,\ r<\min\{a,b\}$. Найти вероятность того, что булавка будет притянута.

Решение: Площадь эллипса с полуосями a и b:

$$S_{\text{элл}} = \pi a b$$

Площадь круга радиуса r:

$$S_{\rm kp}=\pi r^2$$

Так как по условию $r < \min(a,b)$, круг радиуса r целиком лежит внутри эллипса. Вероятность того, что случайно брошенная булавка попадет в круг равна отношению площадей:

$$P = \frac{S_{\text{\tiny KP}}}{S_{\text{\tiny ЭЛЛ}}} = \frac{\pi r^2}{\pi ab} = \frac{\pi r^2}{\pi ab} = \frac{r^2}{ab}$$

Ответ: $\frac{r^2}{ab}$

13. В прямоугольный треугольник, один из углов которого равен $\frac{\pi}{6}$, случайным образом бросается точка. Какова вероятность того, что она окажется внутри вписанной в треугольник окружности?

Решение: Пусть гипотенуза - c, катеты - a и b.

$$\frac{a}{b} = \tan \frac{\pi}{6} = \frac{1}{\sqrt{3}} \Rightarrow b = \sqrt{3}a$$

Площадь:

$$S_{\triangle} = \frac{1}{2}ab = \frac{1}{2}a\left(\sqrt{3}a\right) = \frac{\sqrt{3}}{2}a^2$$

По формуле радиуса вписанной окружности в прямоугольном треугольнике:

$$r = \frac{a+b-c}{2}$$

Подставим $b = \sqrt{3}a$:

$$c = \sqrt{a^2 + 3a^2} = 2a$$

$$r = \frac{a + \sqrt{3}a - 2a}{2} = \frac{a(\sqrt{3} - 1)}{2}$$

Площадь вписанной окружности:

$$S_{\mathrm{okp}} = \pi r^2 = \pi \left(\frac{a\left(\sqrt{3}-1\right)}{2}\right)^2 = \pi a^2 \frac{\left(\sqrt{3}-1\right)}{4}.$$

Вероятность

$$P = \frac{S_{\text{okp}}}{S_{\triangle}} = \frac{\pi a^2 \frac{\left(\sqrt{3}-1\right)^2}{4}}{\frac{\sqrt{3}}{2} a^2} = \frac{\pi \left(\sqrt{3}-1\right)^2}{4} \cdot \frac{2}{\sqrt{3}} = \frac{\pi \left(\sqrt{3}-1\right)^2}{2\sqrt{3}} = \frac{\pi \left(2-\sqrt{3}\right)}{\sqrt{3}} \approx 0.48$$

Ответ: 0.48

Тема 3. Формула полной вероятности. Формула Байеса.

- 3. Два стрелка стреляют по одному разу, независимо друг от друга выбирая одну из двух мишеней. Вероятность выбора первой мишени для них 0.5 и $\frac{2}{3}$ соответственно, а вероятности попадания в первую мишень 0.8 для первого стрелка и 0.9 для второго стрелка, во вторую мишень соответственно 0.7 и 0.8. Какова вероятность хотя бы одного попадания в какую-либо мишень?
- 13. В трех одинаковых урнах находятся шары: в первой с номерами от 1 до 9, во второй от 10 до 20, в третьей от 21 до 30 включительно. Из случайно выбранной урны берется шар, и оказывается, что его номер делится на 5. Какова вероятность того, что этот шар взят из первой урны?

Тема 4. Схема Бернулли.

3. Прибор содержит шесть однотипных микросхем, вероятность выхода из строя каждой в течение одного месяца равна 0.2. Найти вероятность того, что в течение этого срока из строя выйдет не более половины микросхем.

13. Производится испытание на "самовозгорание" пяти телевизоров. Прогонка продолжается двое суток. За указанное время каждый из телевизоров перегревается и "самовозгорается" с вероятностью 0.1. Найти вероятность того, что на момент окончания испытаний сгорит не более двух телевизоров.