Tема # 5

НЕКОТОРЫЕ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНЫХ ВЕЛИЧИН

о классическая схема испытаний Бернулли: задания для повторения

Задание 01.

Вероятность того, что расход электроэнергии в продолжении одних суток не превысит установленной нормы, равна 0,75. Найдите вероятность того, что в ближайшие 6 суток расход электроэнергии в течении 4 суток не превысит нормы.

Задание 02.

Симметричную монету подбрасывают 10 раз. Определите вероятность выпадения "герба": 1) ровно пять раз; 2) не более пяти раз; 3) хотя бы один раз.

Задание 03.

Вероятность выигрыша на один лотерейный билет равна 0,01. Определить, сколько билетов нужно купить, чтобы вероятность хотя бы одного выигрыша в лотерее была не менее 0,9.

Задание 04.

В коробке лежит 200 конденсаторов, причем два из них нужной емкости. Случайным образом из коробки вынимают один конденсатор и после определения его емкости возвращают обратно в коробку. Выяснить, сколько раз нужно осуществить указанную операцию, чтобы вероятность хотя бы один встретить конденсатор нужной емкости была не менее 0,95.

Теорема 1 (теорема Пуассона)

Пусть в схеме Бернулли число испытаний $n\to\infty$ и при этом $np\xrightarrow{n\to\infty}\lambda>0.$ Тогда для любого $m=0,1,2,\dots$ выполнено

$$P_n(m) = C_n^m p^m q^{n-m} \xrightarrow{n \to \infty} \frac{\lambda^m}{m!} e^{-\lambda}.$$

В упрощенной форме, теорему Пуассона можно интерпретировать как:

Если число испытаний n по схеме Бернулли "велико", а вероятность успеха p "мала", причем "мАло" также значение $\lambda = np$, тогда $P_n(m)$ можно приближенно найти по формуле:

$$P_n(m) \approx \frac{\lambda^m}{m!} e^{-\lambda}, \qquad m = \overline{0, n}.$$

Совокупность вероятностей $\{P_n(m)\}_{m=0}^n$ или также обозначаемую за $\{P(m;\lambda)\}_{m=0}^n$ называют распределением Пуассона.

Тема # 05. Некоторые распределения случайных величин

о приближенные значения распределения Пуассона: $P(m;\lambda) \approx \lambda^m e^{-\lambda}/m!$

m	λ										
	. 0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1,0	
0 1 2 3 4 5 6 7 8	0,90484 09048 00452 00015	81873 16375 01637 00109 00005	74082 22225 03334 00333 00025 00002	67032 26813 05363 00715 00072 00006	00158	54881 32929 09879 01976 00296 00036 00004	00497 00070	44933 35946 14379 03834 00767 00123 00016 00002	40657 36591 16466 04940 01111 00200 00030 00004	36788 36788 18394 06131 01533 00307 000051 00007 00001	

m	λ									
	1,5	2,0	2,5	3,0	3,5	4,0	4,5	5,0	5,5	6,0
0 1 2 3 4	0,22313 33470 25102 12551 04707	18045 09022	08208 20521 25652 21376 13360	16803	03020 10569 18496 21579 18881	19537 19537	01111 04999 11248 16872 18981	00674 03369 08422 14037 17547	00409 02248 06181 11332 15582	13385
5 6 7 8 9	01412 00353 00076 00014 00002	03609 01203 00344 00086 00019	06680 02783 00994 00311 00086	00810	13217 07710 03855 01687 00656	15629 10420 05954 02977 01323	17083 12812 08236 04633 02316	17547 14622 10444 06528 03627	17140 15712 12345 08487 05187	16062 16062 13768 10326 06884
10 11 12 13 14		00004 00001	00022 00005 00001	00081 00022 00006 00001	00230 00073 00021 00006 00001	00529 00192 00064 00020 00006	01042 00426 00160 00055 00018	00343 00132	02853 01426 00654 00277 00109	

о формула Пуассона: $P(m; \lambda) \approx \lambda^m e^{-\lambda}/m!$

Задание_ 05.

Вероятность выпуска бракованного сверла равна 0,015. Сверла укладывают в коробки по 100 штук. Найдите вероятность того, что в коробке, выбранной наудачу, не окажется ни одного бракованного сверла.

Задание_ 06.

Вероятность того, что у автомобиля во время движения спускает колесо, равна 0,0004. Найдите вероятность того, что из $10\,000$ движущихся автомобилей такая проблема возникнет меньше чем у трех автомобилей.

Задание_ 07.

Пусть имеются 1000 деталей с вероятностью брака 0,001. Найти вероятность того, что в партии одна бракованная деталь

Задание_ 08.

Вероятность сбоя в работе банкомата при каждом запросе равна 0,0019. Банкомат обслуживает 2000 клиентов за неделю. Определить вероятность того, что при этом число сбоев не превзойдет 3.

Если в схеме испытаний Бернулли значение количества испытаний n "велико" , причем "велики" также вероятности успеха p и неудачи q, то для любого $m\leqslant n$ имеем, что

$$\sqrt{npq} \cdot P_n(m) \approx \varphi(x),$$

где

$$x = \frac{m - np}{\sqrt{npq}},$$
 $\varphi(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}.$

Функцию $\varphi(x)$ называют плотностью стандартного нормального (или гауссова) распределения.

Более габаритно, приближенную формулу веротности можно представить как

$$P_n(m) \approx \frac{e^{-x^2/2}}{\sqrt{2\pi npq}}$$

о значения плотности стандартного нормального (гауссова) распределения: $\varphi(x)$

	и стандартного нормального (гауссова) распределения: φ(x) Сотые доли x									
x	оотые доли 2									
	0	1	2	3	4	5	6	7	8	9
0,0	0,39894	39892	39886	39876	39862	39844	39822	39797	39767	39733
0,1	39695	39654	39608	39559	39505	39448	39387	39322	39253	39181
0,2	39104	39024	38940	38853	38762	38667	38568	38466	38361	38251
0,3	38139	38023	37903	37780	37654	37524	37391	37255	37115	36973
0,4	36827	36678	36526	36371	36213	36053	35889	35723	35553	35381
0,5	35207	35029	34849	34667	34482	34294	34105	33912	33718	33521
0,6	33322	33121	32918	32713	32506	32297	32086	31874	31659	31443
0,7	31225	31006	30785	30563	30339	30114		29659	29431	29200
0,8	28969	28737	28504	28269	28034	27798	27562	27324	27086	26848
0,9	26609	26369	26129	25888	25647	25406	25164	24923	24681	24439
1,0	24197	23955	23713	23471	23230	22988	22747	22506	22265	22025
1,1	21785	21546	21307	21069	20831	20594		20121	19886	19652
1,2	19419	19186	18954	18724	18494	18265		17810	17585	17360
1,3	17137	16915	16694	16474	16256	16038	15822	15608	15395	15183
1,4	14973	14764	14556	14350	14146	13943	13742	13542	13344	13147
1,5	12952	12758	12566	12376	12188	12001	11816	11632	11450	11270
1,6	11092	10915	10741	10567	10396	10226	10059	09893	09728	09566
1,7	09405	09246	09089	08933	08780	08628		08329	08183	08038
1,8	07895	07754	07614	07477	07341	07206		06943	06814	
1,9	06562	06438	06316	06195	06077	05959	05844	05730	05618	05508
2,0	05399	05292	05186	05082	04980	04879	04780	04682	04586	04491
2,1	04398	04307	04217	04128	04041	03955		03788	03706	03626
2,2	03547	03470	03394		03246	03174		03034	02965	02898
2,3	02833	02768	02705	02643	02582	02522	02463	02406	02349	02294
2,4	02239	02186	02134	02083	02033	01984	01936	01888	01842	01797
2,5	01753	01709	01667	01625	01585	01545	01506	01468	01431	01394

о локальная формула Муавра-Лапласа: примеры

Вероятность попадания в цель при одном выстреле равна 0,8. Определить вероятность того, что при 400 выстрелах произойдет ровно 300 попаданий.

Найти вероятность того, что событие А наступит ровно 80 раз в 400 испытаниях, если вероятность появления этого события в каждом испытании равна 0,2.

Вероятность поражения мишени стрелком при одном выстреле составляет 0,75. Найти вероятность того, что при 10 выстрелах стрелок поразит мишень 8 раз.

Найти вероятность того, что при 400 испытаниях событие наступит 104 раза, если вероятность его появления в каждом испытании равна 0,2.

Если в схеме испытаний Бернулли значение количества испытаний n "велико", причем "велики" также вероятности успеха p и неудачи q, то имеет место

интегральная формула Муавра-Лапласа:

$$P\{m_1 \leqslant m \leqslant m_2\} \approx \Phi(x_2) - \Phi(x_1),$$

где

$$x_2 = \frac{m_2 - np}{\sqrt{npq}}, \quad x_1 = \frac{m_1 - np}{\sqrt{npq}}, \quad \Phi(x) = \int_{-\infty}^x \varphi(y) dy = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-y^2/2} dy.$$

Функцию $\Phi(x)$ называют функцией стандартного нормального (или гауссова) распределения. Также справедлива приближенная формула:

$$P\{m_1 \leqslant m \leqslant m_2\} \approx \Phi_0(x_2) - \Phi_0(x_1),$$

где

$$\Phi_0(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-y^2/2} dy$$
 — интеграл Лапласа.

о некоторые значения функции стандартного нормального распределения

z	Φ (z)	z	Φ (z)	z	Ф (z)
0.01	0,0040	0,60	0,2257	1,80	0,4641
0,05	0,0199	0,70	0,2580	1,90	0,4713
0,10	0,0398	0,80	0,2881	2,00	0,4772
0,15	0,0596	0,90	0,3159	2,20	0,4861
0,20	0,0793	1,00	0,3413	2,50	0,4938
0,25	0,0987	1,20	0,3849	2,75	0,4969
0,30	0,1179	1,30	0,4032	3,00	0,4986
0,35	0,1368	1,40	0,4192	3,50	0,4997
0,40	0,1554	1,50	0,4332	4,00	0,4999
0,45	0,1736	1,60	0,4452	4,50	0,4999
0,50	0,1915	1,70	0,4554	5,00	0,4999

о интегральная формула Муавра-Лапласа: три примера!

Задание_ 13.

Вероятность того, что деталь не прошла проверку ОТК, равна 0,2. Найдите вероятность того, что среди 400 случайно отобранных деталей окажется неисправленных от 70 до 100 деталей.

Задание_ 14.

Найдите вероятность того, что при 600 бросаниях игральной кости выпадет от 90 до 120 "шестерок" .

Задание_ 15.

На факультете обучаются 300 студентов. Предполагая, что вероятность родиться в каждый день года одинакова, найдите вероятность того, что ровно 80 студентов факультета будут праздновать дни рождения летом.

Задание_ 16.

Вероятность искажения одного символа при передаче сообщения по линии связи равна 0,001. Сообщение считают принятым, если в нем отсутствуют искажения. Найдем вероятность того, что будет принято сообщение, состоящее из 20 слов по 100 символов каждое.

о некоторые условные рекомендации по применению формул

Если число испытаний $n=\overline{10,20}$, то приближенные формулы используют для грубых прикидочных расчетов. При этом формулу Пуассона применяют в том случае, когда $\lambda=np$ или $\lambda'=nq$ изменяются в пределах от 0 до 2 (при n=10) и от 0 до 3 (при n=20); в противном случае необходимо пользоваться формулами Муавра-Лапласа.

При $n=\overline{20,100}$ приближенные формулы уже можно использовать для прикладных инженерных расчетов. Формулу Пуассона рекомендуется применять, когда λ или λ' заключены в пределах от 0 до 3 (при n=20) и от 0 до 7 (при n=100).

Если $n=\overline{100,1000}$, то практически в любых инженерных расчетах можно обойтись приближенными формулами. Формулу Пуассона используют в случае, когда λ или λ' изменяются в пределах от 0 до 7 (при n=100) и от 0 до 15 (при n=1000).

Наконец, при n>1000 даже специальные таблицы рассчитывают с помощью приближенных формул (правда, для увеличения точности используют специальные поправки). В этом случае для применения формулы Пуассона необходимо, чтобы λ или λ' лежали в пределах от 0 до α , где $\alpha=15$ при n=1000 и увеличивается с ростом n.

о некоторые условные рекомендации по применению формул: проверяем на примерах

Оптовая база снабжает 10 магазинов, от каждого из которых может поступить заявка на очередной день с вероятностью 0,4 независимо от заявок других магазинов. Найдите вероятность того, что в день поступит четыре заявки.

Известно, что 40% автомобилей, следующих по шоссе, у развилки поворачивают направо и 60% — налево. Какова вероятность того, что из 400 автомобилей, проехавших по шоссе, ровно 250 повернули налево?

Известно, что на выпечку 1000 булочек с изюмом ужно израсходовать 10000 изюмин. Найдите вероятность того, что: а) наудачу выбранная булочка не будет содержать изюма; б) среди пяти выбранных наудачу булочек две не будут содержать изюма, а в остальных будет хотя бы по одной изюмине.

Телефонная станция обслуживает 1000 абонентов. Вероятность того, что в течение минуты какому-либо абоненту понадобится соединение, равна 0,0007. Вычислите вероятность того, что за минуту на телефонную станцию поступит не менее трех вызовов.