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I Onpenenenusa

Definition 1.1

1.1 Iuddepennnansuoe ypaBHeHue (done)

OOBIKHOBEHHBIM JIM(b(l)epeHLU/IaJIBHLIM YPaBHEHMEM IIEPBOTO ITOPAAKA HA3bIBAIOT

ypaBHeHUe B
F(z,y,y") = 0.

njin

- 22
- 22

(1.1)
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HuddepeHnnanpHEIM ypaBHeHNEM Ha3bIBAETCS ypaBHEHNE, CBI3bIBalOlIlee He3aBUCUMYIO

[epeMeHHYI0 &, UCKOMYI0 pyHKuu y = y(x) u eé mpoussoxausie y', y’"’, ..., y(n).
Definition 1.2

1.2 Pemrenue puddepeHnnaapHOro ypaBHeHus, oouiee peurerne (done)

OyHKUMA (p - pellleHue YpaBHEHNS, eCIIU
¢ € C'(a,b);
F(z,p(z), o' (r)) =0 ma (a,b)

IpyrumMu cioBaMy, pelieHyeM YpaBHEHNS Ha3bIBAIOT INIANKYI0 PYHKIMIO (0, OTIpeNeIEéHHYIO

(1.2)

Ha uHTepBase (a, b), HoACcTaHOBKa KOTOPOJI BMECTO y 00pall[aeT ypaBHEHIEe B TOKIECTBO Ha
(a,b).
O61LIMM pelleHIeM ypaBHEHNUS Ha3bIBAIOT MHOKECTBO BCEX €0 PELLIeHMIL.

NI

Oyukuus y = p(x) aBnsercs pereHreM nuddepeHnNanbHOr0 ypaBHEeHIs, eCIIN eé

IIOACTaHOBKA B YPaBHEHIIE o6pamaeT €TI0 B TOXKIECTBO.

Definition 1.3

1.3 3agaua Komn (done)

3amaueit Koy niny HauanbHON 3aaueil AJIsI HOpPMAJIBHOT'O YpaBHEHMS

y = f(z,y) (1.3)
HAa3bIBAIOT 3aaUy HAXOXKIEHUS ero PelIeH s, yIOBIETBOPSIOIIEr0 HAUaJIbHOMY YCIOBUIO
Y(7o) = Yo- (1.4)

Hapa q1cell (LUO, yo) IIpM 3TOM Ha3bIBAE€TCA HaUAJIbHBIMIUI NaHHBIMI.

Definition 1.4

1.4 YpaBHeHUe ¢ pa3aensiouinMics nepemeHHbiMu (done)

YpaBuenne B quddepennmanax suga
P(z)dz + Q(y)dy =0 (1.5)

Ha3bIBAaIOT YpaBHEHIEM C pa3feIE€HHBIMY II€pEMEHHBIMIL.
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Taxoe Ha3BaHNME MOTVBMPOBAHO TEM, UTO KaXKO€ €ro cjlaraeMoe 3aBYICUT TOJIBKO OT
OIHOII IEPEMEHHOIL.

YpaBHeHUE Buaa
p1(2)qy (y)dz + py(2)4s(y)dy = 0 (1.6)
Ha3bIBAIOT YpaBHEHIEM C Pa3HeITI0IIIMICS ITepeMeHHBIMA.
50051

Ecnu ypasuenue @(z,y,y’) = 0 ¢ moMowipio anreGpanyeckux npeoOpasoBaHMIl YAAeTCs
NPUBECTHU K BUILY

Y =g(z) - h(y) (L.7)
M, (z) My (y)dz + Ny (z)Ny(y)dy = 0, (1.8)

TO OHO HA3bIBAETCA YPABHEHMEM C pa3aeIIIOIINMIUCI IIEPEMEHHBIMIL.

Definition 1.5

1.5 Ognoponuas ¢pyukuus (done)

Oyukuus F(x,y) HasbiBaeTCs OQHOPOLHON (yHKUMEN CTENEHN (v, €CIIN IIPU BCEX

JOIYCTUMBIX t, T ¥ Y BEPHO PABEHCTBO
F(tz,ty) =t*F(z,y). (1.9)

[Ipumep oMHOPOIHBIX GYHKUMIL: T + Y + z (IIepBOIL CTeNeHN), z? + 3zy + o> (BTOpOIL
Vaty

z2+y?

crenenn), £ cos % (HyJeBoit cTemeHM), (cremenn —%),

Definition 1.6

1.6 Ogaoponuoe [IY mepBoro mopsinka (done)

Hycts P u Q - onHOpoaHble pyHKINU OJMHAKOBOI cTereHn. Torna ypaBHeHMe Buia
P(z,y)dz + Q(z,y)dy =0 (1.10)
HA3BIBAETCA OHOPOJHBIM yPaBHEHUEM.
nimn

HuddepeHnunanpHoe ypaBHEeHNE IIEPBOTO IOPSAKA HA3bIBAETCA OJHOPOIHBIM, €CII €T

MOJKHO IIPMBECTU K BUIOY:

v 1(2) o
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Definition 1.7

1.7 JInneitnoe 1Y nepBoro nopsaka (done)

HuddepennunanpHoe ypaBHeHNe B

Yy =px)y+q(z), (1.12)
HAa3bIBAETCA J'II/IHCI7IHBIM ypaBHeHI/IeM r[epBoro nopa;u(a.

HasBaume nuHeitHOE MOTHUBIIPOBAHO TEM, UTO OHO COCTABJIEHO V13 MHOTOYJIEHOB nepBoﬁ

CTEIleHY 110 OTHOLIIEHNUIO K CUMBOJIAaM y 1 Y.
NI

JIuHeIHBIM ypaBHEHMEM IIEPBOro IIOpAaKa Ha3bIBaeTCd ypaBHeHIE BUA
y +p(x)y = q(x), (1.13)

rae p(x), g(x) — saganHble QYHKUMIL.

Definition 1.8

1.8 YpaBuenune Bepuysuiu (done)

YpaBHeHuUeM BepHyIn Ha3bIBalOT ypaBHEHME BUAA
y = p(z)y + q(z)y®, (1.14)
roe o € R\ {0,1}.
PaspgenuB naHHOE ypaBHEHME Ha Y%, HAXOAUM

v

(e

= p(z)y' ™ + q(x). (1.15)

<

Otcrofia BUHO, UTO 3aMeHa z = '~ CBOMUT ypaBHEHNeE K JIMHEHOMY.
NI

YpaBHeHUeM BepHyIN HasbIBaeTcs ypaBHEHNE BIAA

¥ +p(x)y =q(x)y*, rme a=const,a+0,a+#1 (1.16)
Definition 1.9

1.9 YpaBHeHue B noaHbix guddepennunanax (done)

YpasueHue
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P(z,y)dz + Q(z,y)dy =0 (1.17)
Ha3bIBAIOT ypaBHEHMEM B TIONHBIX AnddepeHImanax, eCm CyIecTByeT Takast QyHKIUS U, 94TO
du = P(z,y)dz + Q(z,y)dy, (1.18)
TO ecTh Uy, = P,u, = Q.
nimn
MuddepenunanpbHoe ypaBHeHNE BUIA
M(z,y)dx + N(z,y)dz =0 (1.19)

Ha3bIBAETCA YPABHEHIIEM B ITOJITHBIX m/[q)q)epeﬂumaﬂax, €CJIN €0 JI€Bad YacCThb IIPENCTABIIAET

c006011 IoTHBLI AuddepeHan HeKoTopoit GyHKumM u (T, y):

Mdz + Ndy = du = @dm + %dy. (1.20)
oz dy

Ycnosue Toro, uro Mdx + Ndy npencrasnsger co6oit moaHbI anuddepenmmat:

%—J\j = %_z;r‘ (1.21)
Definition 1.10
1.10 Oco6o0e peurenne /1Y (done)
Pewrenue y = ¢(z) nuddepeHmanbHOro ypaBHeHUI
®(x,y,y") =0 (1.22)

Ha3BIBAETCA OCOOBIM, €CIIN B KasKIOJl er0 TOUKe HapYIIIAeTCsS CBOMICTBO € JMHCTBEHHOCTH, TO
€CTh eCJIN uepe3 KakKAyIo ero TOUKY (I, Y) KpOMe 3TOTO pelleHNs IIPOXOJUT I APYroe
pelleHe, MMeIoLIee B TOUKe (X, o) Ty JKe KacaTeJbHYI0, YTO U pelleHne i = (&), Ho He
COBIIafalolee C HUM B CKOJIb YTOTHO MaJIOi OKPECTHOCTH (T, Y, )- ['paduk ocoboro perreHms
OynmeM Ha3bIBaTh 0COOOI MHTETPAJILHON KPMBOJI YPABHEHII.

njin

Pemenne ¢ Ha (a,b) ypasHenns y' = f(x,y) HaspiBaeTCs 0COOBIM, €CIIU IS IEOOOTI TOUKM

xy € (a,b) Haitgercs peleHye Y TOTO K€ ypaBHEHsI, TAKOE UTO
p(2o) = ¥(zo) (1.23)

IIPU 3TOM (p = 1) B JII000JI CKOJIb YTOTHO MaJIOJ OKPECTHOCTY TOUKM X).

BoJiee KpaTKO 9TO BBIPAKAIOT CIIOBAMIL: MHTETpaIbHAas KpuBas ypaBHeHus y' = f(z,y)
ABJILETCSI 0CO0OIL, €CNIM B KKIOI eé TOUKe HapyIIaeTcs eUHCTBEHHOCTD PelleHNs 3a8aun
Kormm.
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Definition 1.11

1.11 AV BsIciIero mopsaaka, 3agaua Ko gist Hero (done)

HuddepeHnnanpHbIM ypaBHeHMEM N-TO IOPSAKa Ha3bIBAIOT ypaBHEHIE BUIA
F(z,y,y,..,y™) =0. (1.24)
OyHKIUSA @ — pelleHNe ypaBHeHUs Ha (a, b), eciu

¢ € C™(a,b);

1.25
F(z,0(z),¢ (2),...,™(2)) =0 na (a,b). Gl

Kanounueckum ypaBHeHUeM OyoeM Ha3bIBaTh ypaBHEHUE
y™ = f(z,9,9, ...,y V), (1.26)

paspeléHHOe OTHOCUTEIBHO CTaplell IPOM3BOTHOI.

Sanaqeﬂ Ko JJIA KaHOHMUYECKOTO YPAaBHEHNS HA3bIBAIOT 3aJauy HAXOXKIAEHUA €Tr0

pemIenmd, yqOBIETBOPAIOIIETO HAYAIbHBIM yCIOBMIAM

¥(20) = Yo,y (%) = ¥y - y" V(zo) = v5" - (1.27)
Ha6op uncen (mo, Yo Yoy - yén71)> IIpY 5TOM Ha3bIBAIOT HAUAIBbHBIMI JAaHHBIMIL.
NI
O6rIKHOBeHHOE AUddepeHnNaNbHOe YPpaBHEHIE N-TO IOPSIAKa VIMEEeT BUL
@(w,y,y’, y”, ...,y(")) =0, (1.28)
VIV B PELLIEHHOM OTHOCUTEJIBHO CTapIIell IPOU3BOLHON y(”), BUL
y™ = f(x, vy Yy y("’l)). (1.29)

Besikast GyHKums y(2), MMeroLas HellpepbIBHbIE IPOM3BOAHbIE BILIOT A0 N-TO IIOPSAKA U
YOOBJIETBOPAIOIAs YPaBHEHIIO, Ha3bIBAETCA PEIIEHIEM STOr0 ypaBHEHN, a caMa 3afada
HaXOKIEeHN pelleHnil AuddepeHINaNIbHOTO ypaBHEHI Ha3bIBACTCA 3aJadert
VMHTeTpUpOBaHUA AUPPepeHIINATBHOTO yPaBHEHNA.

Definition 1.12

1.12 JInnueitnoe /1Y n-ro mopsaaka. OgHOpogHOEe, HeogHOpomHOe (done)

JIuneitapiM nuddepeHuanbHbIM ypaBHEHIEM MIOPSIIKA 7 HA3bIBAETCS ypaBHEHME BUIA
y™ +p, 1)y + o+ p ()Y + po(t)y = q(t), (1.30)

TOE Do, D1y -+ P11, 9 € C(a,b).
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Ecinu ¢ = 0 Ha (a, b), TOo ypaBHEHUE, TO €CTh

y™ +p, By Y + 4 py(8)Y + o (t)y = 0, (1.31)
HAa3bIBAETCA O,T_IHOPOI[HBIM, B HpOTI/IBHOM Cﬂy‘lae — HeOHHOpOHHBIM.
Iy

YpasHenue Buma
y™ + a;(z)y™ Y + .. +a, (@)Y +a,(2)y=0 (1.32)

Has3bIBAETCs JIVHETHBIM OJHOPONHEIM AV depeHIIaTbHbIM YPaBHEHNIEM N-TO IIOPSIOKA.

YpaBHeHUE BUIa
Y™ +ay @)y + a1 (@)Y F a,()y = f(2) (1.33)

Ha3bIBAETCS JIMHEIHBIM HEOMHOPOAHBIM A depeHINaIbHbIM YPaBHEHEM N-TO IOPSAKa.

Definition 1.13

1.13 JInHeliHass HE3aBUMCUMOCTD (PYHKITNIT

Definition 1.14

1.14 Onpenmenurens Bporckoro (done)

Ompenenurenem Bporckoro (mmm BpoHCcKuanoM) GyHKIMIL Yy, Yo, .., Y, € C" Y (a, b)
Ha3bIBAIOT

wip=| MO (134

Definition 1.15

1.15 ®dyHmameHTaIbHAA cucTeMa perxeHuit (done)

dyHITaMeHTaIbHOM CHCTEMOJ PEIIeHNII CICTEMBI yPAaBHEHNI Ha3bIBAETCS COBOKYIIHOCTD
€€ N IMHENHO HEe3aBUCUMBbIX PEIlIeHNIA.

NI
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JIro60it HaGOp M3 N IMHEHO He3aBUCUMBIX pelleHuit Y, (x), Y, (), ..., y,, () ypaBHeHus
y™ + a;(z)y™ Y + ... +a, ;1 (2)y + a,(z)y = 0 HazBIBaeTCS ByHTAMEHTANBHOI CHCTEMO
PpElLIEHNIT 3TOTO YpaBHEHNA.

Definition 1.16

1.16 XapakTepuctuueckuii MHOTOWIeH (done)

MHorounen
p(A) = A" +a, A" T+ .. +a A +ag (1.35)

Ha3bIBAETCH XapaKTEPUCTMYECKIM MHOTOUJIEHOM YPaBHEHMS y(") = an_ly(”_l) + ... +ay+

agy = f(t), a ero KOpHM — XapaKTEPUCTUUECKMMI UMCIAMY TOTO K€ YPaBHEHSL.

Definition 1.17

1.17 Cucrema /1Y, penrenne cucremsl (done)

Cucrema nuddepeHIMaNbHBIX YpaBHEHNIT — 9T0 Habop auddepeHUMATbHBIX YPaBHEHNI],
pelaeMbIX COBMeCTHO. PelreHne cucreMsl — 3T0 HaG0p QYHKINIL, KOTOPBII YIOBIETBOPSIET
BCEM YpaBHEHIAM CUCTeMBL Takas ¢popMa 3almcy CUCTeMbl Ha3bIBaeTCs HOPMaIbHOI opMoit

Kormn:
W= fi= )
dx 1\ T Y1,Y25 -5 Y
(1.36)
d "
dy_:L‘ = fn<$, Y1:Y25 -+ yn)
PerrenneMm crctreMbl Ha3bIBA€TCS COBOKYITHOCTD 72 (PYHKIIUAIT
y, = ¥(z), i=1,2,..,n (1.37)

TaKWX, UTO TP IOJCTAHOBKE VX B YPAaBHEHNS CUCTEMBI 3TY YPaBHEHM 00pAIIAIOTCS B
TOKeCTBA OTHOCUTENBHO . [Ipu aToM QyHKIMM ), (Z) IpeaIonaraloTcs HelIpepbIBHO
nuddepeHIIPYEMBIMIU.

N

HopwmansHoit cuctemMoit quddepeHIManbHbIX ypaBHEHNIT IOPSAKA 12 Ha3bIBA€TCH CUCTEMA
YpaBHEHUII BUAA

j:l = fl(t’ $1,...,$n)
(1.38)
z, = f,(t,zq,...,x,)

Ecnu BBecTu B PacCMOTPEHNIE BEKTOPBI
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1 fi(t,r)
r=| .., f(tr)= , (1.39)

TO CHCTEMY MOKHO KOMITAKTHO 3aIICaTh B BUJE OJHOIO N-MEPHOTO YpaBHEHMs
7= f(t,r). (1.40)
Bekrop-dyHKIMS @ - perteHne cucteMsl Ha (a, b), ecan

p € C'((a,b) = R,);

) (1.41)
o(t) = f(t,¢(t)) ma (a,b).
Definition 1.18
1.18 JImHeiiHasA OogHOpPOAHAA M HEOJHOPOAHAA cuctema 1Y (done)
JInuettHOM cucteMoit auddepeHIATHHBIX YPABHEHNUIT HA3bIBAIOT CUCTEMY BIIA
7= P(t)r + q(t), (1.42)
rae P € M,,(C(a,b)), g € C((a,b) — R™).
Ecnu ¢ = 0 Ha (a, b), To cucrema, T0 ecTb
7= P(t)r, (1.43)

Ha3bIBaeTCd OQHOPOOHOM, B IIPOTVMBHOM CJIy4Yae — HEOTHOPOIHOIL.

Definition 1.19

1.19 ®yHKIMA OPUTMHAII

DyHKIUE-OPUTMHATIOM Ha3bIBA€TCSI KOMIUIEKCHO3HauHas QyHKuus f(t) BeliecTBeHHO

IIepeMEHHOI1 ¢, yAOBJIETBOPAIOIIAd CIeAYIOIINM YCIOBIAM:

« f(t)=0,ecmut < 0;
+ f(t) uaTerpupyema Ha JTF060M KOHEUHOM MHTEpPBAJIe OCH t;
« ¢ BospactaHmeM t Moxysb pyHKuu f(t) pacter He GBICTpee HEKOTOPOII MIOKA3ATEIBHO

HKITUI, b CyIIIeCTB YIICIT n Sy > e, uTo VI BCeX ¢ MMeeM:
K TO ecTh cyiecTByioT unciaa M > 0 u sy > 0 taxne, uro cex t uMmee

| ()] < Me®ot. (1.44)

Definition 1.20

1.20 IIpeo6pa3zoBanme Jlamraca

10
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[Ipeo6pasosanuem Jlamnaca L pyukuuu-opurunana f(t), sagansoi Ha [0, 00),
HasbIBaeTCA MpeobpasoBaHue BUMIA:

Lo =Fo) = [ " f(t)ertdr, (1.45)
0

rae o6pas pyukyu f 6ymem o6osHauats 3a F'(p). @ynkumio F(p) HaspiBaoT M300paskeHIEM

¢yukunu-opurnnana f(t).

11
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II Teopemsr

Theorem 2.1

2.1 O cymrectBoBaHMM perueHud 1Y

YpaBuenne y' = f(x) nmeer 6eCKOHEUHO MHOTO PELIEHNII, IOCKOJIBKY B GOPMYILy Y =

[ f(z)dz + C Bxopur npoussonpHas nocrosaHas C.

[liist Toro, YTOGHI MOJMYUYUTh eAMHCTBEHHOE pellleHue ypasHenus y' = f(x), mopcraBum B
HaYaJIbHOE YCJIOBUE, TO eCTh IToTpedyeM, YToOR! GYHKIMS y MIPUHNMAJIA 3aJaHHOe 3HAaUeHNe Y,

opn r = Iy:
Y |1:=z0 = Yo (21)

NeiictBuTenbHO, ycTh GyHKIuA f () HenpepbIBHA Ha HEKOTOPOM MHTepBae (a,b) n Touka
zy € (a,b). 3amenss B popmyne y = [ f(z)dz + C HeonpenereHHBIIT NHTErpaT

OHpe)IeJIeHHI)IM C HepeMeHHLIM BerHMM HpeJIEJIOM X "I HKHIUIM HpeHeJIOM .7)0, HOHY‘II/IM:
T
y— / f(®)dt+ C. (2.2)
Zg

YmoBieTBOPUM HauaIbHOMY ycIOBMIO. [Ipy £ = x; mHTerpas obparaercs B HyJIb M MBI
MOy YMIM:

C =y, (2.3)

Takum o6pasom, ypasHenre y' = f(z) npu HauanpHOM yenoBun VpasHenne (2.1) umeer
€IVHCTBEHHOE pellIeHIe:

v=[ " F(0)dt + v, (2.4)

OTMeTHM, YTO 3TO pellleHNue eNUHCTBEHHO Ha BCeM MHTepBale (a, b).

Theorem 2.2

2.2 Pemrenne ogHOpomHOTO AU depeHINATBHOTO YpaBHEHISA

Caenem ypaBHeHMe YpasHenye (2.11) K ypaBHEHUIO C pas3aessIOIIMIICS IIepeMEHHBIMI.

HJI}I 9TOr0 CAeJIaeM 3aMEHY:

S =usy=uzr. (2.5)

SEES

CieqoBartebHO,

12



Muddepennmanbuble ypaBHEHNA 2 Teopemsl

y =u -r+u, dy=udzr-+ zdu. (2.6)

[Moxgcrasum y u y’ B ypaBHeHme Ypasuenue (2.11):

uj.x—i_u:f(u)@u,'w:ﬂu)—u@%w:f@)—u@)
(2.7)

=t LI _Js

©m_ x <i)/f(u)_u_1n|9’3|‘i‘11101<i>ac_e Flu)u

Kak ompenenuts, UTo ypaBHEHIE€ OXHOPOTHOE?
C mmoMoIIbI0 METOA Pa3MePHOCTEIL.

[punuiiem ¢pyHKINN Yy, IepeMeHHOM T 1 UX AuddepeHnanaM HEeKOTOphIe pa3MepHOCTI.
Hampumep, MeTphI:

x~M, Yy~™M, dr~wm, dy~M. (2.8)
[IpousBomHas y’ = Z—g ~ 1 - GespasmepHas BeIMUNHA.

[l TpaHCIeHIeHTHBIX QyHKINIT (TO ecTh QyHKIINIT, He ABIAIOIINXCS alredpanieCcKIMIL:
sin x, cos z, tg x, ctg x, e*, a®, In x, arcsin x, arccos x, arctan x, arccot £) B KauecTBe apryMeHTa

Yy
DOJDKHA CTOSTH Oe3pasMepHasi BeJINUNHA: €= , tg(%) U TaK Jajee.

YpaBHeHMe Oymer 0OJHOPOSHBIM, €CIIM B HEM CKIIABIBAIOTCS BEJIMUMHBI OTHOIT

pasMepHOCTIL.
Hanpumep:
(22 + zy)y’ = zv/22 — y? + 2y + 92, .
2.9
(M 4+M-M)-1=m VM2 —M2+ MM+ M2
CiieoBaTeNIbHO, ypaBHEHIE OJHOPOLHOE.
Theorem 2.3
2.3 O pemreHMM JMHEHHOTO OJHOPOJHOTO YpaBHEeHIA
PaccMoTpuM cHadasa COOTBETCTBYIOIIE OJHOPOAHOe ypaBHeHue pu ¢(z) = 0:
7 +p(z)g=0. (2.10)
[lepeMeHHBIE 3[1€Ch Pa3IENAIOTCH:
dy d
d—y +p(x)y=0 |- Tx < 3mech MBI npeqmosaraeM, uro g # 0. (2.11)
€ Yy
di
o | p@)ds =0 | = — /p(x)dx & §=C. e Ir@is (2.12)
)

13
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3nmech Ha mocTossHHY0 C' MBI He HaKJIabIBaeM HIUKAKUX OrpaHmueHuit. [lesaeTcs 310 AJIs TOTO,
uToOs! perrerue §J = 0 Bouwro B orBet (Ypasuenue (2.12)). 3aMeHUM HeoIlpexeIe HHbIT

MHTErpaJl ONpeesIeHHbIM C IEPEMEHHBIM BEPXHUM IIPEIETOM:
x
~ = p(t)dx
§=C. ¢ P (2.13)
Ecin ects HauanwHOE YCIIOBIIE:

g |z=a:0 = yOa (214)

10 C' = y,. [ns unTerpupoBanus ypasaenus y’ + p(x)y = ¢(z) Bocronb3yemcst MeTogoM
BapMAaIMM POU3BOJIbHBIX TIOCTOSHHBIX.

Bynmem uckaTh pelieHne 3TOro ypaBHeHUs B CIeLYIOIIeM BUe:
y=u e JP@dr (2.15)
cuyTas U He IOCTOSHHOI, a HEKOTOpoll ¢pyHKumelt or . [uddepeHunpyst, HaXOTUM
y =u e JP@dE Ly o= [Pz (_p(g)). (2.16)
IloncraBus y' B ypaBuenue y' + p(x)y = ¢q(z), momyumm:
u e JP@dE oy o= [P@dr (_p(z)) + p(z)u - e PO = ¢(z) &

s e JP@dE — g(3) & du = g(x) - /PP gy o

(2.17)
S u= /q(x) celpl@)ds gy 4 O,
IToxcraBias u B popmyiry Ypasmerne (2.15), MOIYUMM:
y=e Jp@)dz. (/ q(z) - e/ Pz gy 4 C’). (2.18)

3aMeHUM HEOIIPEACIIEHHDBIC THTETPAJIBI HAa THTETPAJIBI C IIEPEMEHHBIMI BEPXHVIM IIPEANEIIOM:

y(z) = e—fwzop(u)du ‘ (/ ) BI:O p(u)du dv + C) . (2.19)

0

J1st scHOCTY MBI 0003HAUaeM IepeMeHHble MHTeTPUPOBAHNS PasINUHbIMI OyKBaAaMI U 1 U,

OTJIMYHBIMU OT 6YKBBI x.

Ecinu 3agaHo HauanpHOe ycioBue: Y | z=z, = Yo, T0 C' =y, u dopmyina YpasHeHme (2.19)
IpUHIMAaeT BUI:

y(@) = & de P (/ q(v)'ef;)op(u)du.dv_i_yo). 05

0

z T x v
y(z) = go - € TP g g I PO / g(v) - el P gy, (2.21)
- o
Yy
Y

Toectb Yy =4 + Y.

14



Muddepennmanbuble ypaBHEHNA 2 Teopemsl

Theorem 2.4

2.4 Merop Jlarpamxka (Bapuanuy IIpon3BOJIbHON IIOCTOSHHOI)

PaccmoTpuM ypaBHeH1E BTOPOTO IOpAIKa:

Y +ay(2)y +ay(z)y = f(2). (2.22)
ITycTs oOIItee pelrreHe COOTBETCTBYIOIIET0 OQHOPOSHOTO YPaBHEHN IMEET BUL:
g = Ciy; + Cyys, (2.23)

rae Y,Ys — JIMHEITHO He3aBUICUIMbIE pemennda OqHOPOOHOI'O YPaBHEHNA, Cl? 02 -

IIPOM3BOJIPHBIE IIOCTOAHHBIE.

Bynem uckars uactHoe pemterue JIHIAY (Vpasuerne (2.22)) B cenyroleM BIUIe:
Y = uy (2)y; + ug()ys. (2.24)
3mech uq (z), uy () — HEKOTOpBIE PyHKIUNU, KOTOPBIE HAM HY>KHO HAIITH.

OrMmerum cxoncTBO dopMy Ypasuenue (2.23) u Ypasuenue (2.24). MbI Bappupyem
npousBoisbHble noctosHHble C;, Cy, B popmyite Ypasuenie (2.23) 1 moTy4aeM BMECTO HUX

HEKOTOpbIe QYHKLIMNI U, (X)), Uy ().
Haiimem npoussonusie Y, Y” u mopcraBum ux B ypaBHeHue Ypasuene (2.22).
Y’ =ujy; +ugyy +uys + ugys. (2.25)

Tak kKak MBI JIIEM HaCTHOE PEILIEHVIE YPABHEHNIE, HAJIOXKVIM Ha d)YHKLU/H/I Uqp, Uy

AOIIOTHUTEIIBHOE OIrPaHNUEHNIE:

w1y +uzys = 0. (2.26)
Torpma Y/ mpumer Bup:
Y' = uqy; + uyys. (2.27)
CoOTBETCTBEHHO,
Y” = uyyy +uyyy +usys + ugys . (2.28)

IMoncrasum Y, Y’ Y” B ucxongHoe ypaBaenue Vpasrenue (2.22):
w1yl + uryl + Usls + Ugys + aruiy) + agUaYs + axun Yy + agusyy = f(z) &
z

S uy Y] Fagy) +axy; +uy Yy +agys +asys +uiy) +ubys = f(z) & (2.29)

=0(y, — pewenne JOY) =0(y,— pewenue JJOY)
< uiyy +ugyy = f(a).

YunuTeiBasg BBeIeHHBIE paHee OrpaHMueHys Y pasHene (2.26), mojlyyaeM CUCTEMY ypaBHEHIIA

st QYHKLII u], uh:

uy; +usys =0
2.30
{Uiyi +ulyh = f(z). (230)
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Omnpenennrens BpoHCKOro He paBeH HYJIIO HII B OJHOM TOUYKE B CITY JIMHEITHOI

He3aBYICUMOCTIL PeIIeHNIT Y, , Ys.

CremoBaTenbHO, cucTeMa Ypasuenue (2.30) paspelnma eqMHCTBEHHBIM 00pa3oM U Ipu

J100071 mpaBoit uactu. IycTh eé penieHnss UMEIOT BU:

up = ¢y (2)
) (2.31)

Torpa pyHKIUYU U, (T), Uy (T) HAXOAATCI MHTETPUPOBAHMEM:

S

2) PaccMoTpmM ypaBHEHIE N-TO MOPAIKA:
y™ +a;(z)y™ Y + .+ a,(2)y = f(x). (2.33)
3mech Bce IMOCTPOEHNSI aHAJIOTIHEI.
Pemtenne JIOY nmmeer Bun:
§=Cuy +Cyy,+ ...+ Cy,. (2.34)
YacrtrHoe peurenne JIHAY umniem B Bune:
Y = uy(2)y; () + ug()ys(z) + ... +u,(z)y, (). (2.35)

Cremyst OIMCAHHO HPOLEAYPE, IOTyUaeM CIeTYIOIIYIO0 CUCTEMY YPAaBHEHWI i1 (yHKLIIT
’ ’ /.
U, Woy eey Uyt

iy, +usys + ... +uny, =0
wjyy Fubyb+ ...+ uly, =0

......... OHE)
gt gy gl = f(@).
Omnpepennresb 9TON CUCTEMBI — 3TO OIIpeAeINTeNb BpoHCKoro:
Y1 Y2 - Un
v Yo o Un # 0 HU B OXHOJ TOUKe. (2.37)
0

CrnenoBaTenbHo, cucteMa Ypasrenie (2.36) paspelnmMa eqMHCTBEHHBIM 00pasoM U IIpI JIF060it
mpaBoii yacTu. Pelnast eé, HAXOMUM U, U, ..., u,,. PyHKIMYU Uy (T), Uy (T), ..., u,, (*) HaxOOATCS
MHTETPUPOBAHUEM.

Theorem 2.5

2.5 Metop bepnynnn
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HMuddepenunaapHble ypaBHEHUS

HaHOMHI/IM, YUTO YpaBHEHVIEM BepHYJI.T[I/I Ha3bIBA€TCA YPAaBHCHIIE BUIAA

v +p(x)y =q(x)y*, rme a=conts, a#0, a+* 1.

Ero pemenne MO>XHO IIOTYYUTh ABYMS CIIOCOOAMIL.
I. CBenenue k MMHETHOMY ypaBHEHMUIO.

Paspennm obe uactu ypaBHeHUs Ypasuere (2.38) Ha y®:

y _

e +p(z)y'~* = q(x).

CrmenaeM sameny: z = y' =%,
CoOTBETCTBEHHO,

’ Y <

Z=(0-a)-y "y

HOJlCTaHOBI/IM Z N Z, B JICXOHOE YPaBHEHIIE:

— az’ +p(z)z = q(z).

Mg nomyunnn IMHENHOe ypaBHEHNE.
II. (cBemeHMe K ypaBHEHMIO C pa3ielITIoIIIMIICS IlepeMeHHbBIMI)
Crhenaem 3aMeHy IlepeMEHHOII KaK B JIMHEITHOM ypaBHEHIIL:
y=u e JP@dr,
Torma
y =u e JP@dr g o= [p@)dr (g (),

[Moxpcrasum y u y’ B ypaBHeHue Ypasrenue (2.38):

u/ . e_fp(z)dz _|_ u - e_fp(z)dz . (_p(x)) +p(x)u . 6—fp(z)dm =

= q(x)ua o e—afp(m)dz 2N
o - e—fp(z)da: — Q(.’E)Ua . e—afp(a:)dz =

& du = q(z)u - e(l=a) [p(@)dz . g

& — = q(m) ° e(l_a)fp(z)dz 3 dm

Mg1 IIOJIYUNJINI YPAaBHEHME C PA3ACIIAIOIIMIICA IIEPEMEHHBIMIL.

Theorem 2.6

2.6 O mosHoM guddepenmmaie
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Muddepennmanbuble ypaBHEHNA 2 Teopemsl

Ecnu Mdx + Ndy npencraBusger co60it mOTHbIL auddepeHIa, T0O BOCCTAHOBUTD

dyHKIIO (2, Y) C TOUHOCTHIO O KOHCTAHTEI II0 €€ N3BeCTHOMY II0JIHOMY muddepeHIyanty
du = M(z,y)dz + N(z,y)dy (2.45)

MOZKHO C IIOMOIIIBIO Kp]/IBOJII/IHef;IHOI‘O JTHTETrpaja. A mMeHHO 3a(bMKcmpyeM HEKOTOPYIO TOUKY

(g, Yo)- Torma KpUBOIMHEHBI MHTETPAI
u(ey) = [ (M(@,9)do+ N(z,y)dy) (2.46)
i

I10 IPOM3BOJIBHOI KPUBOIL OT TOUKM (X, Y ) O TEKyLLel TOUKM (X, y) AACT 3HAUEHME
byukuuy u(x, y), nuddepeHiman Kotopoit umeer Bup YpasHenne (2.45). IsMeHeHMEe
HAYAJIBHOI TOUKM (I, Yy) IPUBOAKUT K HOOABIEHNUIO IIOCTOSHHOM (QYHKIMS U (T, Y) HAXOLUTCS
C TOUHOCTBIO KO KOHCTAHTBI).

dopmyia Vpasuenie (2.46) mpuHUMaeT 6osiee YAOOHBI BUJ, eCIV KpUBYI0 L BHIOpaTh B
BIIIE JJOMaHOM, IIoKasaHHoi Ha Puc. 2.1.

YN

Puc. 2.1. Kpuas naTerpupoBanms L.
IIpn TaxoMm BeIGOpe L mmeem:
z y
u(e,y) = [ M)z + [ Ny (2.47)
To Yo
COOTBeTCTBEHHO, pellleHNe yPaBHeHNS:

u(z,y) =C. (2.48)

18



Muddepennmanbuble ypaBHEHUST 2 Teopemsl
Theorem 2.7

2.7 O06 UHTerpMUpyroIIeM MHOYKIITEIE

Hamomumm BUI MHTETPUPYIOIIETO0 MHOXKITEIIT:
du = pMdz + pNdy. (2.49)
Hanniem ycioBue Toro, 4To du SBISeTCs IIOIHBIM DU depeHIaIoM:

5o M) = 5 (u)

o oM  Ou ON
2 (21 0)
ox Ay oy oz )" (2.50)
1 Ou 1 oup OM ON
N.— .2 _ M.-.22_ZZ =Z7
< u Oy U Oy oy ox <
Slnp
oy
Olnp Olny OM ON
N. — M- - -
e ox oy oy Ox

Taknum o6pa3oM, I HAXOKAEHMS MHETPUPYIOLIET0 MHOKUTENS MBI IIOJyUNM YpaBHEHIE B
. 0,
YACTHBIX [IPOU3BOAHBIX. IHOTHA yHaeTcs Haiitu ero peutenne. Ecmu p = p(x), To 8—’; =0n

ypaBHeHue YpasHenue (2.50) mpuMeT BUL:

oM ON

dln,u oy oz
— . 2.51
dx N ( )

Ecny npaBast uacTh ypaBHeHUs He 3aBUICUT OT Y, TO In (4 HAXOOUTCS MHTETPUPOBAHIIEM.

Theorem 2.8

2.8 O cymiectBoBaHMM perneHusd /1Y BbICHIIX NOPATKOB

Iyctes byHKIMS f(x, Y, y', ey y("_l)) OJHO3HAUHAa, HEIIPEPbIBHA I MIMEET HEIIPpEPhIBHBIE
_ n—1
YaCTHBIE IIPOU3BOIHEIE II0 ¥, y', ey y(" 1) IIpM 3HAUEHUIX apryMeHTOB | X, Y, y('), eny y(() )>
1 BCexX 3HA4YEHMIX, JOCTATOYHO OIM3KUX K HuM. Torga ypaBHEHUE y(") =
f(x, Y, y', y”, ey y(nfl)) MMeeT eqUHCTBEHHOE pPellleHNe, YIOBIETBOPLIOIee HauaJlbHbIM
Ylo—zy =Yo
y/ ‘z:mo :y6
YCIIOBUAM

_ n—1
YD [ =y Y.

Theorem 2.9

19



Muddepennmanbuble ypaBHEHNA 2 Teopemsl

2.9 3ameHBI JIRIG: ypaBHeHI/IﬁI, AOIIYCKAIOIINUX ITOHVLKEHIE ITOPpAdKaA

1. Vpasuenus suma y'™) = f(x).
Vpasuenue 3™ = f(z) pelraercs ¢ MOMOIIBIO N-KPATHOTO MHTEIPUPOBAHIIL.
2. VpaBuenus supa O (x, yB) k1) (n) = 0,

3mecs ypaBHeHMe He COOEPKUT QyHKUNM Y U €€ HECKOJIBKIX IT0CIeX0BaTeIbHBIX
(k=1)

npousBoaHbIX y', Y, ..., Y .
Crhemnaem 3aMeHY:
2(z) = y®. (2.52)
Torpa MopsANOK ypaBHEHUS IIOHU3UTCA Ha k eIMHNLL:
®(z,2,7, ..., z("_k)) = 0. (2.53)
Eciiu MbI HatiieM OGOV MHTETPaJl TOTO MOCIEAHEr0 YPaBHEHS
z=p(z,C,Cy,....C,_1), (2.54)
TO Y OTIPEEIUTCS U3 YPABHEHNS:
y®) = o(z,Cp, Cy, ..., C ). (2.55)
3. YpaBHeHns Buga @(y, v,y y(”)) = 0.
3mech ypaBHEHIE He COIEPKUT HE3ABUCUMOIL ITEPEMEHHOI .
[IpumeM y 3a He3aBUCUMYIO IIEPEMEHHYIO I CIeJIaeM 3aMeHY:
¥ =p(y). (2.56)

9TUM MbI IOHU3NM IOPANOK ypaBHeHus Ha 1. B orBere monyunm pyskuo z = z(y).
HaitmeMm, kak ImpeoOpasyloTcs cTapiiye IMpOoM3BOgHbIE IIPY TAKOI 3aMeHe.

Y d | dy d dp dy dp
=—| Z=Z | == =— .= =p-—. 2.57
dr | dx dx (p(y)) dy dz 2 dy ( )
P P

w_ 4, _d dp\ _ dp dp d (dp\ _

(2.58)
dp\® d?
_p (_P) L2 P

dy dy?
4. VpaBHeHNs BUOa %@(w, vy, y("_l)) =0.

3mech JeBas YacTh YpaBHEHNS IIPeCTaBIIeT COOOI IOIHYI0 IIPOM3BOIHYIO IIO .
IIponHTerprpoBaB ypaBHeHUEe, MBI IIOHU3MM €TI0 IIOPSIOK Ha 1.

5. YpaBHeHUd BuAa @(:{:, vy, .., y(”)) = 0, rme ® - omHOpOOHAS QYHKIMS OTHOCUTEIHHO

Y,y sy y™.
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®(z,y,y ..., y(")) Ha3bIBAETCS OMHOPOIHO QYHKIMEN k-TO TIOPAIKA OTHOCUTEIHHO
IIepeMeHHBIX ¥, 1, ..., 4""), eciu oHa yIOBIETBOpSIET CIIeXYIOIIEMY CBOICTBY:
@(w,ty,ty’, ...,ty(")) =tk. @(m,y,y’, cey y(")). (2.59)

IIpu y # 0 cxenaeM 3aMeHy IepeMeHHBIX:

/7
=L (2.60)
y
Torma npomsBOgHbIE MPEOOPASYIOTCS 110 CIEXYIOLIEMY IIPABIILY:
y = zy,
(2.61)

y// — Z/y+zy/ — z/y+z2y‘

U rak manee. Takum o6pa3oM, MOpAROK ypaBHeHUsa moHusntced Ha 1. Pynkunio y = 0 crengyer
PaccMOTPETE OTAENIBHO.

Theorem 2.10

2.10 CBoricTBa pelleHII JMHEITHOro ogHopogHoro Y

Theorem 2.11

2.11 Heo6xomgmumoe ycI0BME JIMHEITHOV 3aBMCHMMOCTH PelIeHNIt

Theorem 2.12

2.12 JIocTaToOuHOe ycCJIOBHeE JMHEITHOM 3aBUCIIMOCTH pelleHNUN

Theorem 2.13

2.13 O 6a3suce MPOCTpaHCTBA PelIeHUIT

Theorem 2.14

2.14 OOuxee penreHNe JMHEITHOro HeogHOpoxHOTO /1Y
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O6b111ee perreHye JIMHETHOIO HEOJHOPOLHOTO YpaBHEHNS €CTh CYMMa YaCTHOTO PELIeHT

HEOTHOPOTHOTO YpaBHEHNS ¥ OOIIIero peleHysI OQHOPOSHOTO YpaBHEHM.

Theorem 2.15

2.15 IIpuHIUI CyIIe pIO3UIIN

Jlokaknte, uTO eciu @, — pelerue cucreMsl i = P(t)r 4+ ¢, (t), ¢, — pemienue crucremsr

7= P(t)r + g5(t), T0 v; + ¢, — petrerue cucremsl 1 = P(t)r + g, (t) + ¢5(t).
Theorem 2.16

2.16 MeTop Bapumanuy IIpON3BOJIbHBIX NOCTOTHHBIX

Theorem 2.17

2.17 O ®CP pisa pa3saM4YHbBIX BelleCTBEHHBIX KOPHeIl
XapaKTepUCTNUECKOro MHOTOUJIEeHA

Takum o6pa30M, €CJIM BCE KOPHM XapaKTEPUCTUUECKOI'O0 YPAaBHEHMA KPATHOCTIL 7Y

BEIIIECTBEHHBI, TO GyHAaMeHTAIbHAs CYCTEMa PELICHNII COCTOUT U3 CIEeTYIOIIX (yHKIIVIA:

GNE G e (2.62)

Theorem 2.18

2.18 O ®CP g1 KpaTHBIX BellleCTBEHHBIX KOPHEN
XapaKTepUCTIUYEeCKOr0O MHOTOWIEeHA

Ecint cpeny KopHeII ecTh KpaTHBIE, TO IS K&KIOTO M3 HIUX HY>KHO HAJITH CTOJIBKO
JIMHEJIHO He3aBMCYMBIX PEIIeHNI], KAKOBa ero KPaTHOCTh. PacCMOTpUM 3Ty CUTYaALINIO I

ypaBHEHNUS BTOPOTO TIOPSIKA:
v 4+ a1y +ayy =0. (2.63)
Hanmiem XapakTepucTudeckoe ypaBHeHIe:
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ITycTs \; — KOpeHB BTOPOII KPATHOCT! XapaKTePUCTUYECKOTO ypaBHeHus. Torma

IUCKPUMIHAHT YpaBHeHNUs paBeH Hymio: D = a? — 4a, = 0. CemoBaTessHoO,

Sy = —%. (2.65)

Az

OpnHO U3 pelreHNII ypaBHeHMs YpasHenue (2.63) — ato e*1*. HaligeM BTOpOe pelleHne,

JVHEITHO He3aBUICUMOE C HIIM. BYHCM JICKATb €ro B B OE:

Yy = u(z) - eM?. (2.66)

Torma:
vy = eMT(u 4+ \ju), (2.67)
yy = eMe(u” + 220 + A2u). (2.68)

INoxgcTaBuM Yy, Yo, Yo» B UICXOTHOE YpaBHEHME Y pasHeHue (2.63):

eM®(u” + 22U + A2u) + a1 M (U + Aju) + ayuet® =0

seM?lu+ (20 +ay) v+ (M4ar+a) =0& (2.69)
N —  —
=0( B ammy Aj=—3+) =0(B cuny A%2+a; Ata,=0)u’

Su" =0su=Cr+G.
Bri6epem QpyHKIMIO % ClemyommM oopasom: u = . Torga:
Yp =T - €M7, (2.70)
IIpoBepuM, UTO peIlleHNs Y, U Yo OyAYT IMHEITHO He3aBUCYIMBIL:

e T reM®
 \\eMr oeMr 4 N zeti®

Y1 Y2

Wy, =
(yl ?/2) yi yé

) — 2T £, (2.71)

Taxum o6pasoM pyHIaMeHTaIbHAs CUCTeMa PellleHIiT I ypaBHeHus Y pasrene (2.63) mMeeT

BVAI:

et get?, (2.72)

Theorem 2.19

2.19 JInHemmHOeE OTHOPOTHOE oy BTOPOro IMOPAAKA C IIOCTOSTHHBIMNI
K03 pummenTamMn

Theorem 2.20
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2.20 Metop HeompeneleHHBIX K03 PumeHTOB

Merop HeompeneneHHbIX K0O9QPUIMEHTOB pabOTAET TOIBKO IS JIMHENHBIX
HEOIHOPOIHBIX yPABHEHUII € IIOCTOSHHBIMY K03 PULIeHTaMM U IIPABOIL UacThio f ()

CII€eMaJIbHOT'O B/ Oa.
y™ +ay" Y+t ay = f(o), (2.73)
rge a,asg, ..., a4, — HEKOTOPHIE IIOCTOSHHBIE.

B HekoTOpBIX ciay4asx pererne quddepeHINAIbHOTO YpaBHEeHNA YaaeTcs II0fo0pars.

CocraBuM TabuuIly BUOB UACTHBIX PELLIEHNIT AJIS PAsINIHbIX BUJOB IIPaBbIX yacreil f(x).
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IIpaBag uacTs
nuddepeHIMATEHOTO
ypaBHEHNUs

KopHu xapaKkTepucTuuecKoro
ypaBHEHUS

BI/I,T_IBI YaCTHOT'O pEIICHNA

1) Yuco 0 He sBIsSETCS
KOpHEM
XapaKTE€PUCTUUECKOTO
ypaBHEHUSI

2) Yucio 0 sBiIseTCSI KOPHEM
XapaKTePUCTIYECKOTO

YPaBHEHMA KPATHOCTI S

1) Yucio o He gBJIsIETCS
KOpHEM
XapaKTepUCTIYECKOTO
ypaBHEHUS

2) Yucio o iBIseTcss KOpHEM
XapaKTepUCTIYECKOTO

ypaBHEHUS KPaTHOCTH §

P, (z)cos Bz + Q,,(z) sin Sz

1) Yucna + i beta e
SIBJISIFOTCS. KOPHSIMU
XapaKTePUCTIUECKOTO
ypaBHEHNS

P, (z) cos Bz + Q,(z) sin Bz

2) Yucna 47 aBagroTcs
KOPHSIMU
XapaKTePUCTUUECKOTO

YPaBHEHMA KPATHOCTIL S

z ( () cos Br +
Qp(z )smﬂx)

) cos Bz +

(B, (x
sin Bx)

m(fv

1) Yncna o + i He aBngroTC
KOpHAMU
XapaKTepUCTIUECKOTOo
ypaBHEHUS

('Pk(x) cos Bz +
Q. (z) sin Bm)e‘”

2) Yncna « + 8 aBasroTcs
KOpPHSIMU
XapaKTePUCTIUECKOTO

ypaBHEHUS KPAaTHOCTH §

:Uj ( P, () cos Bz +
() sin [J’w)eam

Ta6:. 2.2. Tabiua BULOB YACTHBIX PEIIEHNII I PA3INMYHBIX BUNIOB IIPABBIX UaCTEN

k — nauGonpiuas us creneneit m u n. P, (r) — 310 monMHOM cTemneHu m ¢

HeoIlpeieJIeHHBIMY KO3 PUIIeHTaMIL.

Ecnu mpaBast uacts ypaBHeHUs f(Z) eCTh CyMMa ABYX IIPABBIX UACTEN CIIELMAIBHOTO

Bupa: f(x) =

fi(z) + f5(x), To yacTHOE pereHME ClEeMyeT UCKATH B BUIE CYMMBI ABYX

pemrennit: Y; + Y;, rme Y] orBeuaer mpaBoit uacTu f, a Y, oTBeuaer mpaBoit yacTu fo.

Theorem 2.21
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2.21 MeTop MCKIIOYEeHNA NI penieHus cucremsl [{Y

MeTon MCKIIIOUEHNST aHATIOTMUEH COOTBETCTBYIOIIEMY alre0panueckoMy METORY.

Ecny ogHO 13 ypaBHEHMII CYICTEMBI IT03BOJISIET BHIPA3UTh ONHY M3 HEM3BECTHBIX (PyHKIUIT
uepes ApyTHe, TO CAeJIaeM 3TO ¥ IIOACTaBMM JaHHOe BBIpa)KEHIIE B OCTAIbHbIE YpaBHeHI. MBI
nosyunm cucremy u3 (n — 1)-ro ypasuenus ¢ (n — 1)-oit HemsBectHOI pyHxumeit. OgHaKo,
MOPAOK YpaBHEHMIT Bo3pacTeT. [loBTOpsAeM aTy Ipoueaypy A0 TeX IIop, II0Ka He NpUAeM K
OHOMY YpaBHEHUIO N-TO IOpAAKa. PelltaeM 3T0 ypaBHEHVIe 11 Uepe3 ero pellleHye BhIpaskaeM
OCTaJIbHBIE MICKOMBIE (PYHKIIVINL.

IIpounntocTpupyeM 3TOT MeTOJ Ha IIpMMeEpe CUCTeMbI IBYX YpaBHEHUIA:

dy

L= ay, + by, + f(z)
by oL (2.74)
dx

e = cyr +dy; + g().
3necs a, b, ¢, d — mocrostHHbIe K03 dumenTsL, a f(z) u g(x) — 3aganuble yHKUMN. Y, (T) U
Yo () — mckomble QyHKIUN.

Bripasum y, 13 IepBOro YpaBHEHNS CUCTeMbI Y pasHeHe (2.74):

w=j (dw =T f(w)) | =)

ITomgcTaBUM BO BTOpOE YpaBHEHME CUCTEMBI Y papHeHue (2.74) BMECTO Yy IIPABYIO YaCTh

Ypasuenue (2.75), molydaeM ypaBHEHIE BTOPOTO ITOPSIAKA OTHOCUTENBHO Y (T ):

a2 d
A% + B% +Cy, + P(z) =0, (2.76)

rae A, B, C — HEKOTOpPBIE TIOCTOSIHHBIE.

Pewas ypaBuenue Vpasuenue (2.76), HaxoguM y; = y; (). [logcraBum HalineHHOE

BBIpQ)KE€HME I Y U ‘2—3;1 B YpaBHeHMe (2.75), HaiteM Ys.
Theorem 2.22

2.22 Mertop Jiyiepa Ajid pellieHIs OAHOPOSHBIX JMHEHbIX cucteM Y
IIPY IIPOCTHIX COOCTBEHHBIX YMCIIAX

MaTpuuHBII MeTOR MPUMEHIM TOJIBKO JJIS JIMHEITHBIX OMHOPOMHBIX CUCTEM YpPaBHEHMUII C
IIOCTOSTHHBIMY KO3 PUIMIeHTaMu:

Y1 = a11Y; + a10Ys + o a1y,
Yy = Ag1Yy + AoYs + ... + A3, Y, (2.77)

y;l =0,1Y + An2Y2 + < pnYn-

rame aij — HEKOTOPBbIE ITOCTOAHHBIE KOB(b(i)I/ILU/IeHTbI.
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Cucrema ypaBHeHUI YpasHene (2.77) MOKeT ObITh 3aIllICAHA B MATPUYIHOM BIIJIE:

Y’ =AY, (2.78)
rZie BBeJEHbI CIeAYIOI/e 0003HAUEHNIS:
/
Y= " Cao T s z; . (2.79)
y, App - QA y;l
Martpuiia-crobers
Y = 0y, 0y, 6:dy,, (2.80)

Has3bIBaeTCSA YaCTHBIM pellleHIeM MATPUYHOTO ypaBHeHMd Y pasHeHue (2.78) Ha MHTepBaje

(a,b), ecrut ee moxcTaHOBKA B ypaBHEHIE 00paljaeT ero B TOKAECTBO [JIs II00bIX - € (a, b).

Cucrema n 4aCTHBIX pelIeHNT YpaBHeHUS Y pasaene (2.78)

1 n
v (2) W (@)
(2) (n)
Yiz) =% @] . . Y@=|% @ (2.81)
yi () y (x)
HaspIBaeTCs pyHAaMEeHTAIbHOI Ha MHTepBale (a,b), ecnn dyuxkuun Y, (), ...... Y (z)
JIMHETHO HEe3aBUCUMBI.
JluneitHast He3aBUCUMOCTD peuteHuit Y (), ......, Y, (z) ypaBuenus Ypasnenue (2.78)

9KBIUBAJIEHTHA TOMY, UTO OIIPENEIUTEIID

v (@) 5" (@) - 15" (@) £ ova e (a,b) (2.82)
) (@) YD () - Y ()
bes JOKa3aTeJIbCTBA.

3amernm, uro BepxHMe nHAEKCH (1), (2), ...... , (n) — aTo HOMep uacTHOrO pertenns (a He
IIOPSIIOK IIPOM3BOHOI).

Oo61ee perreHne MaTpuyHoro auddepeHIMaIbHOTO ypaBHeHUs YpasHeHue (2.78) ecTh
JIMHeltHas KoMOuHanms QyHIaMeHTaTbHON CUCTEMBI PELIEHNIT C IIPOU3BOIbHBIMI
koapummentamu C, G, ...... C,:

Y(z) = CY(z) + GYy(z) + ... +C.Y, (x). (2.83)

B 0OBIUHO 3aNIMICK 9TO JAET pellleHNe CUCTeMBI Y pasHere (2.77):

1 (@) = Gt (@) + C? (@) + o + Gt (2)
............ e

27



Muddepennmanbuble ypaBHEHNA 2 Teopemsl

Proof. s Toro, uToGbI IPOBEPUTH, UTO YpasHeHue (2.83) ecTh 00IIlee pellleHe, HYKHO

yOeuThCS B TOM, UTO JUISL JIFOOBIX HAUAIBHBIX YCIOBUI Y1 (Zg), Yo (X)), -vveevy Yy (Tg) MOKHO
Hatitu 3Hauenus C;, G, ...... , C,, Taknme, 4TO pelreHne YpasHenue (2.83) OygeT uMm
YIOBJIETBOPSITH:

............ (2.85)

Cucrema Ypasuene (2.85) — 370 HeOTHOPOIHAS JIMHETHAA CUCTeMa a0TeOpanuecKux

ypaBHeHuit oTHocuteasHO C), Oy, ... , C,,. E€ onpeennTesp OTIMYeH OT HYJIS IIPU JII0O0M
z (bopmyna Ypasuenne (2.82)), mosTomy crcrema Ypasuene (2.85) OGHO3HAUHO
pasperunma npu J6sIX Y (Tg), ... » Un(Z(), UTO U mOKa3BIBAET TEOPEMY.
|
B coorBeTcTBUU C TEOpEMOTL, IS pelleHNsT CUCTeMBI Y pastene (2.77) HaMm TpebyeTcst
HalTu QyHIaMEeHTAIbHYIO CUCTEMY pellleHuil ypaBHeHus Ypasuenie (2.78). Bygem mckars
pelleHNs B CJIeAYIOIIeM BIJE:
31
Y(z) = 5? e g eR (2.86)
€n
IMopcrasum YpaBueHne (2.86) B YpasHenue (2.78):
3! &
Pae = Al i et (2.87)
€n &n
Coxpartas Ha e, IPUXOINM K anre6panueckoMy MaTPUUHOMY ypaBHEHWIO:
&1
AX=)XX, r1me X=|:
¢, (2.88)
& (A—INX =0.
MbI mosryumiu 3ajauy 0 COOCTBEHHBIX BEKTOPAX M COOCTBEHHBIX 3HAUEHMAX MATPULIBL A.
YcioBue cylecTBOBaHMS HETPUBIAIBHOTO PellleHNs ypaBHeHus Y pasHene (2.88) TakoBo:
det(A— M) =0. (2.89)

KopHunu \; aT0ro anre6panueckoro ypaBHeHMs 1n-0Jf CTEIIEHN — 3TO COOCTBEHHbIE 3HAUECH
MaTtpuubl A, a HeTpUBUANbHbIE pellleHNs] ypaBHeHUs Y pasrere (2.88), COOTBETCTBYIOIIE \ =

A; — 9TO COOCTBEHHBIE BEKTOPHI.

[TopcraHOBKA COGCTBEHHOTO BEKTOPA M COOCTBEHHOTO 3HAUEHUA B QOPMYITy
Ypasuenue (2.86) mact HaM pelueHye Y () MaTpu4yHOro ypaBHeHus Ypasuerue (2.78) (mm
cucremsl Ypasrenne (2.77)). Takum o6pasoM, JIMHETHO He3aBUCUMBbIE COOCTBEHHBIE BEKTOPBI

MaTtpuubsl A maroT HaM BeKTOp-QYHKIMM 13 PyHIaMEHTAIBHOI CUCTEMBbI pellIeHNI.
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[7151 TOrO, YTOOBI IIOJIYUNTH BCIO GYHAAMEHTAIBHYIO CICTEMY, TpeOyeTCs HAiTI 1
JIMTHEITHO HE3aBUCUMBIX PELIeHUIL.

[Ipn paccmoTpeHnu Teopuu cructeM aAnddepeHINATPHbIX YPABHEHNUIT MBI 0003HAUAIII
He3aBUCUMYIO [IepeMEHHYI0 uepes T, a QYHKIN YePes Yq, Yo, «---.. , Yy, JJISL TOTO, UTOOBI
IIPOEMOHCTPMPOBATH CXOACTBO C TEOPMEl OTHEIbHbIX AuddepeHIMAaTbHbIX YpaBHeHNIL. [Ipn
peleHny 3agau MbI OyIeM UCIIOIb30BaTh AJI He3aBUCUMOIL ITIepeMeHHOII Goiree
TpagULUMOHHOE 0003HaueHNe ¢, a A QyHKIuiT — 0003HAUEHNS T, Y, 2 BO M30eKaHme
V3JIVIIITHET THIEeKCALVIIL.

Theorem 2.23

2.23 MeTop Jiiepa AJIA pellleHUsI OGHOPOAHBIX JINMHEIHBIX cucteM [{Y
MPU KPATHBIX COOCTBEHHBIX UMCJIAX

Ecnn kopeHBb A = )\ MMeeT KpaTHOCTH S, TO €My HOJLKHBI COOTBETCTBOBATD S JIMHEITHO
He3aBUCUMBIX pertrenit. OmHolt Gynkumm e*o? Gymer HemoctaTouso. B aToM ciryuae uiem
pellleHre B BUe:

Yietot 4+ Yytero! 4+ ...+ Yt tetot, (2.90)

Jns onpeneneHNs KOOPAWHAT BEKTOPOB Y7, Y5, ...... , Y, mopacraBisgeM Ypasuenue (2.90) B
JCXOMHYIO CHCTeMy ypaBHEHUII 1 B K&KAOM M3 ypaBHEHNI IpUpaBHMBaeM Koo duimeHTs!I
IIpY JINHETHO He3aBUCUMBIX (YHKIAX.

Theorem 2.24

2.24 OO1xee pelreHNe JMHEITHON HEOTHOPOXHOI cucTteMbl Y

Theorem 2.25

2.25 CsoiicTBa npeoopa3oBanus Jlamraca

1. L(af + Bg) = aLf + BLg — nuneitHOCTS;
Jloka3aTenbCTBO OUEBUIHO B CYUTY IMHETHOCTY MHTETpaa.

2. L(f(at)) = %F(E), a > 0 - Teopema momo6us;

Proof.
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L(f(at)) = / " vt flat)dt. (2.91)
0
3ameHa: s = at = ds = adt.
_ = —Bg 1 _ 1 Z_)
- /0 e 5 f(s)~ds = aF<a)‘ (2.92)
|

3. L(e* f(t)) = F(p — a) - TeopeMa cMeILeHNs;
Proof.

L(e™f(t)) = /OO e Pted f(t)dt = /00 e~ P9t f(t)dt = F(p — a). (2.93)
0 0

||
86— ) = ), 0 0wy
Proof
L(f(t— a)) = / " eptf(t — a)dt = (2.94)
:
3amena: s =t —a = ds = dt.
_ / " e pseap f(s)ds = (2.95)
f(s)=0mpus <0
- / " eps f(s)ds = P F(p). (2.96)
:
|
Theorem 2.26
2.26 O muddepeHIMpPOBaHNY U300pAIKEHNIS
Lt(®) =~ F () (2.97)
L") = (-1 F(0) (2.98)
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Proof. IIpomuddepennupyem 1o napamerpy p popmyiy Ypasuenne (2.45) u3 onpeneaeHns
npeo6pasoBanns Jlamnaca:

F(p) = / b f(t)e Pdt,
0

d o (2.99)
GO = [ ererod = —Lesw)
CoOTBETCTBEHHO,
L) = (1 [ e @i = (1)L S), (2.100)
dp™ o
|
Theorem 2.27
2.27 O mudPepeHnmpoBaHNN OPUTMHATIA
L(f'(t)) = pF(p) — f(0). (2.101)
L(f™(#)) = p"F(p) —p" " f(0) = p"*f'(0) — ... = f"71(0). (2.102)
Proof.
LUF (1)) = / T p e ridt o (2.103)
0
u=eP, du=—pePdt, v=f(t), dv=f(t)dt (2.104)
S f(ev I+ [ F)edt=—f(0) + pF(). (2105)
0
Popmyna g f™) (t) mokaspIBaeTCs IO MHIYKIIII.
Basa nposepena (n = 1). Ilepexog n — n + 1:
L) = [ fr e e (2.106)
0
u=eP, du=—pePldt, v=fM(t), dv=f"r(t)dt (2.107)
e f™ (e 5 +p / " F el 0t =
0
= —F9(0) +p(p" F(p) — "V 5(0) 2 (0) — ..~ fr Vo)) = 1O
= p" I F(p) — p™ £(0) —p" 1 f(0) — ... — f)(0).
|
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Theorem 2.28

2.28 00 MHTErpuUpPOBAHUN OPUTUHAJIA

t _f)
L(/O f(T)dT) = (2.109)

Proof. BeemeM ¢yHKIiM0 XeBucaiiga o cIeqyIoiieMy IpaBuiTy:

1, t>0
0(t) = {0 ' 2o (2.110)

L(/ f(T)dT)zL /oo 00 —7) - f(r)dr :L(B*f):L(@)L(f):%p(@_m)

]
Theorem 2.29
2.29 IIpeoo6pasoBanusa Jlamaca mpocreimmx QyHKINIT
[Ipeo6pasoBanue Jlamraca onpeneaeHo TOIBKO A QYHKINIL, 0OpAIAOIIXCsI B HOJb
npu ¢t < 0. IToaromy BbinuchIBas Tabunily n300paXkeHM1, Oy1eM CUMTATh, UTO (yHKINU-
OpUIrMHAIBI 00PAIIA0OTCS B HOJIb Ha OTPULATEIHHOI ITOJYOCH.
_ 1.
L L(1) = &;
Proof.
> e Pt 1
L(1) :/ e Pt 1dt=— | = -. (2.112)
0 —-P D
||
aty _ 1
2. L(e™) —
Proof.
L(eot) = L(eot-1) = ——. (2.113)
p—a
||
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