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I Onpenenenusa
Definition 1.1
1.1 InddepenunaaprHOe ypaBHEHUE
OGBIKHOBEHHBIM OU(depeHINaNTbHbIM YpaBHEHEM IIEPBOTO IOPSIAKA HA3BIBAIOT
ypaBHEHIE BUAA
F(z,y,y") =0. (1.1)

HuddepeHnnanpHbIM ypaBHeHIIEM Ha3bIBAETCS ypaBHEHNE, CBI3bIBalolllee He3aBUCUMYIO

njin

[epeMeHHYI0 T, UICKOMYI0 QyHKUMo y = y(x) u eé npoussoxuste ',y ..., y(n).
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Definition 1.2

1.2 Pemrenue nuddepeHnnarbHOro ypaBHeHsA, 00IIIee perreHne

OyHKINA (p - pellleHNe YPaBHEHN, eI
¢ € C'(a,b);
F(z,p(z),¢'(z)) =0 na (a,b)

Hpyrumu caoBamu, pelieHieM ypaBHeH!sI Ha3bIBAIOT INIAKYI0 QYHKIMIO 0, OIIPeNeIEHHY IO

(1.2)

Ha uHTepBae (a,b), HoACTaHOBKA KOTOPOIl BMECTO Y 00pall[aeT ypaBHEHNE B TOKIECTBO HA
(a,b).
OO6LIMM pelleHIeM ypaBHEHNUS Ha3bIBAIOT MHOKECTBO BCEX €0 PELLIeHMNIL.

NI

Oyukuus y = ¢(x) aBusercs pereHneM nuddepeHnNanbHOr0 ypaBHeHIs, eCiu eé

IIOACTAaHOBKA B YPaBHEHIIE 06paLuaeT €TI0 B TOXKIECTBO.

Definition 1.3

1.3 3apmaua Kommn

3amaueit Ko niy HayanbHOI 3agadell A1 HOPMaJIbHOTO YpaBHEHM

y = f(z,y) (1.3)
Ha3bIBAIOT 3aa9y HAXOXKAEHNSI €TI0 PEIICHNA, YIOBIETBOPAIOIIET0 HAYAJIbPHOMY YCJIOBIIIO
y(@o) = yo- (1.4)

ITapa uncen (Z, Yo) IPU TOM Ha3bIBAETCS HAYAIbHBIMI JAHHBIMIL.

Definition 1.4

1.4 YpaBHeHUe ¢ pasgeJsIOIMMICA lepeMeHHbIMU

YpaBHeHnne B nuddepeHImagax Buga
P(z)dz + Q(y)dy =0 (1.5)
Ha3bIBAIOT ypaBHEHMEM C pases I HHbBIMI IlepeMeHHBIMIL.

Takoe Ha3BaHUE MOTUBMPOBAHO TEM, UTO Ka’KJO€ €ro Cjlara€Mo€ 3aBUCUT TOJIBKO OT

OJHOJ IIEPEMEHHOIL.

YpasHenue Buga
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P1(2)qy (y)dx + py(x)gy(y)dy =0 (1.6)
Ha3bIBAKOT ypaBHeHI/IeM C paSJIe.HHIOH.U/IMI/ICH HepeMeHHbIMI/I.
140)1%1

Ecnu ypaBuenne @(x,y,y’) = 0 ¢ momorrpo anredpandyeckix npeoOpasoBaHMil YAAETCS
NIPUBECTU K BUAY

y = g(@) - h(y) (L.7)
M, (x) My (y)dx + Ny (z) Ny (y)dy = 0, (1.8)

TO OHO HA3bIBAETCA YPaBHEHVEM C PA3OEIAIINMICI IIEPEMEHHBIMIU.

Definition 1.5

1.5 OgHOpOomHasT PyHKIUS

Oyukuus F(z,y) HasbIBaeTCSI OJHOPOLHON (PyHKIMEN CTENIEHN (v, €CIIN IIPU BCEX

JOITYCTUMBIX t, T U Y BEDHO PABEHCTBO
F(tx,ty) = t*F(z,y). (1.9)

[pumep omHOPOXHBIX GYHKIMIL: T + Y + 2 (TepBoit crerernn), x2 + 3xy + y2 (BTOpOI
T+Y
m2+y2

crernenn), £ cos % (HyJeBOIT cTETIEH ), (crerrern —%)

Definition 1.6

1.6 Opnoponnoe /1Y nmepsoro mopsangka

Iycrs P u @ - ogHOpoHble GPYHKIMM OAMHAKOBOI cTerteHn. Toraa ypaBHeHMe Buia
P(z,y)dz + Q(z,y)dy =0 (1.10)
HA3BIBAETCS OHOPOJHBIM ypaBHEHUEM.
nim

HuddepennnanpHoe ypaBHEeHNE IIEPBOTO MOPSIKA HAa3bIBAETCS OJHOPOIHBIM, €CIIV €TI0
MO>KHO IIPMBECTH K BUIY:

v = (%) (1.11)

Definition 1.7



Muddepennmanbuble ypaBHEHNA 1 Onpepenenns

1.7 Jlunevinoe /1Y mepBoro mopsgka

HMuddepenunanpHoe ypaBHEHNE BUAA
¥ =p(@)y + q(2), (1.12)
HAa3bIBAETCS JIMHENHBIM YPaBHEHMEM IIEPBOTO IIOPSIIKA.

HasBanme nuHeitHOE MOTHUBUIPOBAHO TE€EM, UTO OHO COCTABJIEHO VI3 MHOTOYJIEHOB nepBoﬁ

CTEeIIeHM 110 OTHOLIEHNIO K CMMBOJIaM Y 1 i’ .
nim

JIMHEI?IHI)IM ypaBHeHmeM HepBOFO Hop;[m(a Ha3bIBAETCA ypaBHeHme B oa
y +p(x)y =q(), (1.13)

rae p(x), q(x) — 3agaHHBIe QYHKLIMNL.

Definition 1.8

1.8 YpaBuenue bepnynnn

ypaBHEHI/IeM BepHyJUII/I HAa3bIBAKOT ypaBHeHI/[e B/ aa
y =p(@)y + q(z)y*, (1.14)
roe o € R\ {0,1}.
PaspgenuB manHoe ypaBHeHUE Ha Y%, HAXOAUM

g;=pwwkﬂ+qwl (1.15)

<

OTcroma BUOHO, UTO 3aMeHa 2 = yl_o‘ CBOOUT ypaBHEHIIE K JIMHEITHOMY.
NI

ypaBHEHI/IeM BepHYJ’IJII/I Ha3bIBA€TCA YPAaBHEHMIE B

v +p(z)y =q(x)y®, rmea=const,a#0,a+#1 (1.16)

Definition 1.9

1.9 YpaBHeHue B moaHbIX fudPepeHIIMmanax

Ypasuenue

P(z,y)dz + Q(z,y)dy =0 (1.17)
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Ha3bIBAIOT YPAaBHEHUEM B IONHBIX AnddepeHuanax, eciy CylecTByeT Takas QyHKIMS U, UTO
du = P(z,y)dz + Q(z,y)dy, (1.18)

/7 /7
TO €CTh Uy, = P, uy = Q.

nim
HuddepenunanpHoe ypaBHeHNe B
M(z,y)dx + N(z,y)dz =0 (1.19)
HA3BIBAETCS YPAaBHEHVEM B IIOJIHBIX M depeHImanax, ecim ero jesas 4acTh [IPeICTABIET
co6011 moHbLI guddepeHaT HeKoTopoit GpyHKuMM u (T, Y):

Mdx + Ndy = du = @dﬂv + @dy. (1.20)
Ox oy

Yenosue Toro, uto Mdx + Ndy npencrasiser coboit moaHblin quddepenmmar:

88—]\; - %—]z. (1.21)
Definition 1.10
1.10 Oco6oe pemrenne 1Y
Pewrenue y = ¢(x) nuddepeHnanbHOro ypaBHeHUS
O(z,y,y')=0 (1.22)

Ha3BIBAETCSA OCOOBIM, €CJIU B KK O ero TOYKe HapyIIaeTcs CBOMICTBO e JMHCTBEHHOCTH, TO
€CTh ecJIN uepe3 KaKAYI0 ero TOUKY (Z(, Y) KPOMe 3TOTO pelIeHNs IIPOXOJUT I APYroe
pellleHNe, MMeIOLIee B TOUKe (I, Y) Ty K€ KacaTeJIbHYI0, UTO U pelleHue y = (), HO He
COBITAfIAfOIIee C HUM B CKOJIb YTOTHO MaJIoll OKPEeCTHOCTH (T, Y). I'paduk ocoboro perrerns

OymeM Has3bIBaTh 0CO00I MHTErPAIBHOI KPUBOI YPAaBHEHUS.
NI

Pewrenue ¢ Ha (a,b) ypasuenus y' = f(x,y) HaspIBaeTcs 0COOBIM, €CIIM IS JIIOOOI TOUKK

zy € (a,b) Hailgercs peleHye ¥ TOTO K€ YPaBHEHMsI, TAKOE UTO
90(330) = @b(xo) (1.23)
IIPY 3TOM @ = 1) B 0001 CKOJIb YTOXHO MAJIOI OKPECTHOCTI TOUKU X).

Bosee kpaTKo 3TO BhIpaX<aloT CJIOBaMI: MHTErpaJibHAsg KpUBas YpaBHEHNS y =f (m, y)
aBJIgeTCI 0CO0O0IL, eCIN B KAXKIOI €€ TOUKe HapylIaeTcs eJMHCTBEHHOCTD PEIlIeHNd 3a1aunl
Kormm.

Definition 1.11
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1.11 AY BeIcuiero mopsaaka, sagaya Komm aiia sHero

MuddepeHunaIbHbIM ypaBHEHIEM N-TO MMOPAIKA HA3bIBAKOT ypaBHEHNE BUIA
F(a:,y,y’, e y(")) = 0. (1.24)

OyHKLUSA @ — pellleHue ypaBHeHUs Ha (a, b), ecu

¢ € C"(a,b);
, o (1.25)
F(%,QD(QJ),QD (.’L‘),,QD (l’)) =0 nHa (a’vb)'
Kanornmueckum ypaBHeHI/IeM 6yIIeM Ha3bIBAThb ypaBHeHI/Ie
y(n) = f(x)ya y/7"'7y(n_1))7 (126)

paspeméHHoe OTHOCUTEIBHO CTapIeN IIPON3BOSHOI.

Banaqeﬁ Komn JAJI1 KAHOHNUYECKOTO YPAaBHEHNI HAa3bIBAIOT 3ajauy HaXOXIOEHUA €T0
pemIeHMsa, yAOBIETBOPAIOIIETO HAYAJIBHBIM YyCIOBIIAM

y(%0) = Y0, ¥ (o) = ¥p 9™ D (wo) = 95" (1.27)
Ha6op uucen (.’L‘O, Yo Yoy - yén_1)> IIpM 9TOM HA3bIBAIOT HAYAJIBHBIMI TaHHBIMI.
WU
OG6rIkHOBeHHOE auddepeHnNaNbHOE YPaBHEHNE 1-TO ITOPIAKA IMEET BUL
®(z, 9,9y, y™) =0, (1.28)
N B peI_LIeHHOM OTHOCUTEJIBbHO CTapI.I.Ief;I HpOI/IBBOI[HOI?I y(n)’ B
y™ = f(a:,y, y',y”,...,y(”_l)). (1.29)

Besikast pynxius y(x), mMeromas HelpepbIBHbIE IIPOU3BOAHBIE BILUIOTH IO 7-TO IOPAIKA U
YIOBIETBOPSIOIIAS YPAaBHEHIO, Ha3bIBAETCS PeIlleHEM 9TOTO YpaBHEHN, a caMa 3aJaya
HaxOXgeHus peureHnit nuddepeHIMATFHOTO YPaBHEHNS Ha3bIBAETCS 3a1aveit
MHTerprpoBaHus quddepeHIMaTbHOTO YPaBHEHUS.

Definition 1.12

1.12 JIuneitnoe 1Y n-ro nmopsaaka. OmHOpOgHOE, HEOMHOPOAHOE

JInueitapIM nuddepeHIATbHBIM ypaBHEHIIEM IIOPSIAKA 1 HA3bIBAETCSI ypaBHEHIE BUa
y™ +p, )y Y + 4 p ()Y + po(t)y = q(t), (1.30)

rae p07p17 "'7pn—1’ q € C(a’ b)

Ecnu ¢ = 0 Ha (a, b), To ypaBHeHME, TO eCTb
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y™ +p, )y Y + 4 py(8)Y + po(t)y =0, (1.31)
Ha3bIBAETCSA OMHOPOIHBIM, B IIPOTUBHOM CJIydae — HEOMHOPOHBIM.
A%

YpaBHeHUIE BUIa
y™ +a, @)y + .+ a, (@)Y +a,(z)y =0 (1.32)

Ha3bIBAETCS JIMTHETHBIM OMHOPOOHBIM ﬂ]/[(l)(bepeHI_H/[aJII)HI)IM YPaBHEHMEM T-TO IIOPAOKA.

YpasHeHUE Buma
Y™ +a, @)y + .+ a, (@)Y + e, (2)y = f(2) (1.33)

Ha3bIBAETCS JIUMHEVTHBIM HEOJHOPOAHBIM ,umb(bepeﬂumaanbIM YPaBHEHMEM 71-T'O IIOPAIKA.

Definition 1.13

1.13 JInHeltHAsI HE3AaBUCUMOCTH (PYHKITNIT

Definition 1.14

1.14 Omnpepenurtens BpoHckoro

OmpenenureneM BpoHckoro (1im BpoHCKIMAHOM) GYHKIMIL Yy , Yo, ..., ¥y, € C™ D (a, b)
HAa3bIBAIOT

wip=| M (134

Definition 1.15

1.15 dyHpamMeHTaJIbHAsA CUCTEMa pelIeHUI

dyHImaMeHTaIbHOI CICTEMOI PeLIeHNUI CCTEMb] YpaBHEHMUIT Ha3bIBae€TCI COBOKYIIHOCTh

€€ 1 IMHEITHO He3aBJMCVIMBbIX peIlIeHNIL.

NI
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JIro60it HaGOp M3 N IMHEHO He3aBUCUMBIX pelleHuit Y, (x), Y, (), ..., y,, () ypaBHeHus
y™ + a;(z)y™ Y + ... +a, ;1 (2)y + a,(z)y = 0 HazBIBaeTCS ByHTAMEHTANBHOI CHCTEMO
PpElLIEHNIT 3TOTO YpaBHEHNA.

Definition 1.16

1.16 XapaKTepMCTUUYECKNI MHOTOUJIeH

MHorounen
p(A) = A" +a, A" T+ .. +a A +ag (1.35)

Ha3bIBAETCH XapaKTEPUCTMYECKIM MHOTOUJIEHOM YPaBHEHMS y(") = an_ly(”_l) + ... +ay+

agy = f(t), a ero KOpHM — XapaKTEPUCTUUECKMMI UMCIAMY TOTO K€ YPaBHEHSL.

Definition 1.17

1.17 Cucrema /1Y, pemreHne cucTeMbl

Cucrema nuddepeHIMaNbHBIX YpaBHEHNIT — 9T0 Habop auddepeHUMATbHBIX YPaBHEHNI],
pelaeMbIX COBMeCTHO. PelreHne cucreMsl — 3T0 HaG0p QYHKINIL, KOTOPBII YIOBIETBOPSIET
BCEM YpaBHEHIAM CUCTeMBL Takas ¢popMa 3almcy CUCTeMbl Ha3bIBaeTCs HOPMaIbHOI opMoit

Kormn:
W= fi= )
dx 1\ T Y1,Y25 -5 Y
(1.36)
d "
dy_:L‘ = fn<$, Y1:Y25 -+ yn)
PerrenneMm crctreMbl Ha3bIBA€TCS COBOKYITHOCTD 72 (PYHKIIUAIT
y, = ¥(z), i=1,2,..,n (1.37)

TaKWX, UTO TP IOJCTAHOBKE VX B YPAaBHEHNS CUCTEMBI 3TY YPaBHEHM 00pAIIAIOTCS B
TOKeCTBA OTHOCUTENBHO . [Ipu aToM QyHKIMM ), (Z) IpeaIonaraloTcs HelIpepbIBHO
nuddepeHIIPYEMBIMIU.

N

HopwmansHoit cuctemMoit quddepeHIManbHbIX ypaBHEHNIT IOPSAKA 12 Ha3bIBA€TCH CUCTEMA
YpaBHEHUII BUAA

j:l = fl(t’ $1,...,$n)
(1.38)
z, = f,(t,zq,...,x,)

Ecnu BBecTu B PacCMOTPEHNIE BEKTOPBI
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1 fi(t,r)
r=| .., f(tr)= , (1.39)

TO CHCTEMY MOKHO KOMITAKTHO 3aIICaTh B BUJE OJHOIO N-MEPHOTO YpaBHEHMs
7= f(t,r). (1.40)
Bekrop-dyHKIMS @ - perteHne cucteMsl Ha (a, b), ecan

p € C'((a,b) = R,);

) (1.41)
o(t) = f(t,¢(t)) ma (a,b).
Definition 1.18
1.18 JImHeiiHasA OogHOpPOAHAA M HEOJHOPOAHAA cuctema 1Y
JInuettHOM cucteMoit auddepeHIATHHBIX YPABHEHNUIT HA3bIBAIOT CUCTEMY BIIA
7= P(t)r + q(t), (1.42)
rae P € M,,(C(a,b)), g € C((a,b) — R™).
Ecnu ¢ = 0 Ha (a, b), To cucrema, T0 ecTb
7= P(t)r, (1.43)

Ha3bIBaeTCd OQHOPOOHOM, B IIPOTVMBHOM CJIy4Yae — HEOTHOPOIHOIL.

Definition 1.19

1.19 ®yHKIMA OPUTMHAII

DyHKIUE-OPUTMHATIOM Ha3bIBA€TCSI KOMIUIEKCHO3HauHas QyHKuus f(t) BeliecTBeHHO

IIepeMEHHOI1 ¢, yAOBJIETBOPAIOIIAd CIeAYIOIINM YCIOBIAM:

« f(t)=0,ecmut < 0;
+ f(t) uaTerpupyema Ha JTF060M KOHEUHOM MHTEpPBAJIe OCH t;
« ¢ BospactaHmeM t Moxysb pyHKuu f(t) pacter He GBICTpee HEKOTOPOII MIOKA3ATEIBHO

HKITUI, b CyIIIeCTB YIICIT n Sy > e, uTo VI BCeX ¢ MMeeM:
K TO ecTh cyiecTByioT unciaa M > 0 u sy > 0 taxne, uro cex t uMmee

| ()] < Me®ot. (1.44)

Definition 1.20

1.20 IIpeo6pa3zoBanme Jlamraca

10
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[Ipeo6pasosanuem Jlamnaca L pyukuuu-opurunana f(t), sagansoi Ha [0, 00),
HasbIBaeTCA MpeobpasoBaHue BUMIA:

Lo =Fo) = [ " f(t)ertdr, (1.45)
0

rae o6pas pyukyu f 6ymem o6osHauats 3a F'(p). @ynkumio F(p) HaspiBaoT M300paskeHIEM

¢yukunu-opurnnana f(t).

11



Muddepennmanbuble ypaBHEHNA 2 Teopemsl

II Teopemsr

Theorem 2.1

2.1 O cymrectBoBaHMM perueHud 1Y

YpaBuenne y' = f(x) nmeer 6eCKOHEUHO MHOTO PELIEHNII, IOCKOJIBKY B GOPMYILy Y =

[ f(z)dz + C Bxopur npoussonpHas nocrosaHas C.

[liist Toro, YTOGHI MOJMYUYUTh eAMHCTBEHHOE pellleHue ypasHenus y' = f(x), mopcraBum B
HaYaJIbHOE YCJIOBUE, TO eCTh IToTpedyeM, YToOR! GYHKIMS y MIPUHNMAJIA 3aJaHHOe 3HAaUeHNe Y,

opn r = Iy:
Y |1:=z0 = Yo (21)

NeiictBuTenbHO, ycTh GyHKIuA f () HenpepbIBHA Ha HEKOTOPOM MHTepBae (a,b) n Touka
zy € (a,b). 3amenss B popmyne y = [ f(z)dz + C HeonpenereHHBIIT NHTErpaT

OHpe)IeJIeHHI)IM C HepeMeHHLIM BerHMM HpeJIEJIOM X "I HKHIUIM HpeHeJIOM .7)0, HOHY‘II/IM:
T
y— / f(®)dt+ C. (2.2)
Zg

YmoBieTBOPUM HauaIbHOMY ycIOBMIO. [Ipy £ = x; mHTerpas obparaercs B HyJIb M MBI
MOy YMIM:

C =y, (2.3)

Takum o6pasom, ypasHenre y' = f(z) npu HauanpHOM yenoBun VpasHenne (2.1) umeer
€IVHCTBEHHOE pellIeHIe:

v=[ " F(0)dt + v, (2.4)

OTMeTHM, YTO 3TO pellleHNue eNUHCTBEHHO Ha BCeM MHTepBale (a, b).

Theorem 2.2

2.2 Pemrenne ogHOpomHOTO AU depeHINATBHOTO YpaBHEHISA

Caenem ypaBHeHMe YpasHenye (2.11) K ypaBHEHUIO C pas3aessIOIIMIICS IIepeMEHHBIMI.

HJI}I 9TOr0 CAeJIaeM 3aMEHY:

S =usy=uzr. (2.5)

SEES

CieqoBartebHO,

12



Muddepennmanbuble ypaBHEHNA 2 Teopemsl

y =u -r+u, dy=udzr-+ zdu. (2.6)

[Moxgcrasum y u y’ B ypaBHeHme Ypasuenue (2.11):

uj.x—i_u:f(u)@u,'w:ﬂu)—u@%w:f@)—u@)
(2.7)

=t LI _Js

©m_ x <i)/f(u)_u_1n|9’3|‘i‘11101<i>ac_e Flu)u

Kak ompenenuts, UTo ypaBHEHIE€ OXHOPOTHOE?
C mmoMoIIbI0 METOA Pa3MePHOCTEIL.

[punuiiem ¢pyHKINN Yy, IepeMeHHOM T 1 UX AuddepeHnanaM HEeKOTOphIe pa3MepHOCTI.
Hampumep, MeTphI:

x~M, Yy~™M, dr~wm, dy~M. (2.8)
[IpousBomHas y’ = Z—g ~ 1 - GespasmepHas BeIMUNHA.

[l TpaHCIeHIeHTHBIX QyHKINIT (TO ecTh QyHKIINIT, He ABIAIOIINXCS alredpanieCcKIMIL:
sin x, cos z, tg x, ctg x, e*, a®, In x, arcsin x, arccos x, arctan x, arccot £) B KauecTBe apryMeHTa

Yy
DOJDKHA CTOSTH Oe3pasMepHasi BeJINUNHA: €= , tg(%) U TaK Jajee.

YpaBHeHMe Oymer 0OJHOPOSHBIM, €CIIM B HEM CKIIABIBAIOTCS BEJIMUMHBI OTHOIT

pasMepHOCTIL.
Hanpumep:
(22 + zy)y’ = zv/22 — y? + 2y + 92, .
2.9
(M 4+M-M)-1=m VM2 —M2+ MM+ M2
CiieoBaTeNIbHO, ypaBHEHIE OJHOPOLHOE.
Theorem 2.3
2.3 O pemreHMM JMHEHHOTO OJHOPOJHOTO YpaBHEeHIA
PaccMoTpuM cHadasa COOTBETCTBYIOIIE OJHOPOAHOe ypaBHeHue pu ¢(z) = 0:
7 +p(z)g=0. (2.10)
[lepeMeHHBIE 3[1€Ch Pa3IENAIOTCH:
dy d
d—y +p(x)y=0 |- Tx < 3mech MBI npeqmosaraeM, uro g # 0. (2.11)
€ Yy
di
o | p@)ds =0 | = — /p(x)dx & §=C. e Ir@is (2.12)
)

13



Muddepennmanbuble ypaBHEHNA 2 Teopemsl

3nmech Ha mocTossHHY0 C' MBI He HaKJIabIBaeM HIUKAKUX OrpaHmueHuit. [lesaeTcs 310 AJIs TOTO,
uToOs! perrerue §J = 0 Bouwro B orBet (Ypasuenue (2.12)). 3aMeHUM HeoIlpexeIe HHbIT

MHTErpaJl ONpeesIeHHbIM C IEPEMEHHBIM BEPXHUM IIPEIETOM:
x
~ = p(t)dx
§=C. ¢ P (2.13)
Ecin ects HauanwHOE YCIIOBIIE:

g |z=a:0 = yOa (214)

10 C' = y,. [ns unTerpupoBanus ypasaenus y’ + p(x)y = ¢(z) Bocronb3yemcst MeTogoM
BapMAaIMM POU3BOJIbHBIX TIOCTOSHHBIX.

Bynmem uckaTh pelieHne 3TOro ypaBHeHUs B CIeLYIOIIeM BUe:
y=u e JP@dr (2.15)
cuyTas U He IOCTOSHHOI, a HEKOTOpoll ¢pyHKumelt or . [uddepeHunpyst, HaXOTUM
y =u e JP@dE Ly o= [Pz (_p(g)). (2.16)
IloncraBus y' B ypaBuenue y' + p(x)y = ¢q(z), momyumm:
u e JP@dE oy o= [P@dr (_p(z)) + p(z)u - e PO = ¢(z) &

s e JP@dE — g(3) & du = g(x) - /PP gy o

(2.17)
S u= /q(x) celpl@)ds gy 4 O,
IToxcraBias u B popmyiry Ypasmerne (2.15), MOIYUMM:
y=e Jp@)dz. (/ q(z) - e/ Pz gy 4 C’). (2.18)

3aMeHUM HEOIIPEACIIEHHDBIC THTETPAJIBI HAa THTETPAJIBI C IIEPEMEHHBIMI BEPXHVIM IIPEANEIIOM:

y(z) = e—fwzop(u)du ‘ (/ ) BI:O p(u)du dv + C) . (2.19)

0

J1st scHOCTY MBI 0003HAUaeM IepeMeHHble MHTeTPUPOBAHNS PasINUHbIMI OyKBaAaMI U 1 U,

OTJIMYHBIMU OT 6YKBBI x.

Ecinu 3agaHo HauanpHOe ycioBue: Y | z=z, = Yo, T0 C' =y, u dopmyina YpasHeHme (2.19)
IpUHIMAaeT BUI:

y(@) = & de P (/ q(v)'ef;)op(u)du.dv_i_yo). 05

0

z T x v
y(z) = go - € TP g g I PO / g(v) - el P gy, (2.21)
- o
Yy
Y

Toectb Yy =4 + Y.

14



Muddepennmanbuble ypaBHEHNA 2 Teopemsl

Theorem 2.4

2.4 Merop Jlarpamxka (Bapuanuy IIpon3BOJIbHON IIOCTOSHHOI)

PaccmoTpuM ypaBHeH1E BTOPOTO IOpAIKa:

Y +ay(2)y +ay(z)y = f(2). (2.22)
ITycTs oOIItee pelrreHe COOTBETCTBYIOIIET0 OQHOPOSHOTO YPaBHEHN IMEET BUL:
g = Ciy; + Cyys, (2.23)

rae Y,Ys — JIMHEITHO He3aBUICUIMbIE pemennda OqHOPOOHOI'O YPaBHEHNA, Cl? 02 -

IIPOM3BOJIPHBIE IIOCTOAHHBIE.

Bynem uckars uactHoe pemterue JIHIAY (Vpasuerne (2.22)) B cenyroleM BIUIe:
Y = uy (2)y; + ug()ys. (2.24)
3mech uq (z), uy () — HEKOTOpBIE PyHKIUNU, KOTOPBIE HAM HY>KHO HAIITH.

OrMmerum cxoncTBO dopMy Ypasuenue (2.23) u Ypasuenue (2.24). MbI Bappupyem
npousBoisbHble noctosHHble C;, Cy, B popmyite Ypasuenie (2.23) 1 moTy4aeM BMECTO HUX

HEKOTOpbIe QYHKLIMNI U, (X)), Uy ().
Haiimem npoussonusie Y, Y” u mopcraBum ux B ypaBHeHue Ypasuene (2.22).
Y’ =ujy; +ugyy +uys + ugys. (2.25)

Tak kKak MBI JIIEM HaCTHOE PEILIEHVIE YPABHEHNIE, HAJIOXKVIM Ha d)YHKLU/H/I Uqp, Uy

AOIIOTHUTEIIBHOE OIrPaHNUEHNIE:

w1y +uzys = 0. (2.26)
Torpma Y/ mpumer Bup:
Y' = uqy; + uyys. (2.27)
CoOTBETCTBEHHO,
Y” = uyyy +uyyy +usys + ugys . (2.28)

IMoncrasum Y, Y’ Y” B ucxongHoe ypaBaenue Vpasrenue (2.22):
w1yl + uryl + Usls + Ugys + aruiy) + agUaYs + axun Yy + agusyy = f(z) &
z

S uy Y] Fagy) +axy; +uy Yy +agys +asys +uiy) +ubys = f(z) & (2.29)

=0(y, — pewenne JOY) =0(y,— pewenue JJOY)
< uiyy +ugyy = f(a).

YunuTeiBasg BBeIeHHBIE paHee OrpaHMueHys Y pasHene (2.26), mojlyyaeM CUCTEMY ypaBHEHIIA

st QYHKLII u], uh:

uy; +usys =0
2.30
{Uiyi +ulyh = f(z). (230)

15



Muddepennmanbuble ypaBHEHNA 2 Teopemsl

Omnpenennrens BpoHCKOro He paBeH HYJIIO HII B OJHOM TOUYKE B CITY JIMHEITHOI

He3aBYICUMOCTIL PeIIeHNIT Y, , Ys.

CremoBaTenbHO, cucTeMa Ypasuenue (2.30) paspelnma eqMHCTBEHHBIM 00pa3oM U Ipu

J100071 mpaBoit uactu. IycTh eé penieHnss UMEIOT BU:

up = ¢y (2)
) (2.31)

Torpa pyHKIUYU U, (T), Uy (T) HAXOAATCI MHTETPUPOBAHMEM:

S

2) PaccMoTpmM ypaBHEHIE N-TO MOPAIKA:
y™ +a;(z)y™ Y + .+ a,(2)y = f(x). (2.33)
3mech Bce IMOCTPOEHNSI aHAJIOTIHEI.
Pemtenne JIOY nmmeer Bun:
§=Cuy +Cyy,+ ...+ Cy,. (2.34)
YacrtrHoe peurenne JIHAY umniem B Bune:
Y = uy(2)y; () + ug()ys(z) + ... +u,(z)y, (). (2.35)

Cremyst OIMCAHHO HPOLEAYPE, IOTyUaeM CIeTYIOIIYIO0 CUCTEMY YPAaBHEHWI i1 (yHKLIIT
’ ’ /.
U, Woy eey Uyt

iy, +usys + ... +uny, =0
wjyy Fubyb+ ...+ uly, =0

......... OHE)
gt gy gl = f(@).
Omnpepennresb 9TON CUCTEMBI — 3TO OIIpeAeINTeNb BpoHCKoro:
Y1 Y2 - Un
v Yo o Un # 0 HU B OXHOJ TOUKe. (2.37)
0

CrnenoBaTenbHo, cucteMa Ypasrenie (2.36) paspelnmMa eqMHCTBEHHBIM 00pasoM U IIpI JIF060it
mpaBoii yacTu. Pelnast eé, HAXOMUM U, U, ..., u,,. PyHKIMYU Uy (T), Uy (T), ..., u,, (*) HaxOOATCS
MHTETPUPOBAHUEM.

Theorem 2.5

2.5 Metop bepnynnn

16



HMuddepenunaapHble ypaBHEHUS

HaHOMHI/IM, YUTO YpaBHEHVIEM BepHYJI.T[I/I Ha3bIBA€TCA YPAaBHCHIIE BUIAA

v +p(x)y =q(x)y*, rme a=conts, a#0, a+* 1.

Ero pemenne MO>XHO IIOTYYUTh ABYMS CIIOCOOAMIL.
I. CBenenue k MMHETHOMY ypaBHEHMUIO.

Paspennm obe uactu ypaBHeHUs Ypasuere (2.38) Ha y®:

y _

e +p(z)y'~* = q(x).

CrmenaeM sameny: z = y' =%,
CoOTBETCTBEHHO,

’ Y <

Z=(0-a)-y "y

HOJlCTaHOBI/IM Z N Z, B JICXOHOE YPaBHEHIIE:

— az’ +p(z)z = q(z).

Mg nomyunnn IMHENHOe ypaBHEHNE.
II. (cBemeHMe K ypaBHEHMIO C pa3ielITIoIIIMIICS IlepeMeHHbBIMI)
Crhenaem 3aMeHy IlepeMEHHOII KaK B JIMHEITHOM ypaBHEHIIL:
y=u e JP@dr,
Torma
y =u e JP@dr g o= [p@)dr (g (),

[Moxpcrasum y u y’ B ypaBHeHue Ypasrenue (2.38):

u/ . e_fp(z)dz _|_ u - e_fp(z)dz . (_p(x)) +p(x)u . 6—fp(z)dm =

= q(x)ua o e—afp(m)dz 2N
o - e—fp(z)da: — Q(.’E)Ua . e—afp(a:)dz =

& du = q(z)u - e(l=a) [p(@)dz . g

& — = q(m) ° e(l_a)fp(z)dz 3 dm

Mg1 IIOJIYUNJINI YPAaBHEHME C PA3ACIIAIOIIMIICA IIEPEMEHHBIMIL.

Theorem 2.6

2.6 O mosHoM guddepenmmaie
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Muddepennmanbuble ypaBHEHNA 2 Teopemsl

Ecnu Mdx + Ndy npencraBusger co60it mOTHbIL auddepeHIa, T0O BOCCTAHOBUTD

dyHKIIO (2, Y) C TOUHOCTHIO O KOHCTAHTEI II0 €€ N3BeCTHOMY II0JIHOMY muddepeHIyanty
du = M(z,y)dz + N(z,y)dy (2.45)

MOZKHO C IIOMOIIIBIO Kp]/IBOJII/IHef;IHOI‘O JTHTETrpaja. A mMeHHO 3a(bMKcmpyeM HEKOTOPYIO TOUKY

(g, Yo)- Torma KpUBOIMHEHBI MHTETPAI
u(ey) = [ (M(@,9)do+ N(z,y)dy) (2.46)
i

I10 IPOM3BOJIBHOI KPUBOIL OT TOUKM (X, Y ) O TEKyLLel TOUKM (X, y) AACT 3HAUEHME
byukuuy u(x, y), nuddepeHiman Kotopoit umeer Bup YpasHenne (2.45). IsMeHeHMEe
HAYAJIBHOI TOUKM (I, Yy) IPUBOAKUT K HOOABIEHNUIO IIOCTOSHHOM (QYHKIMS U (T, Y) HAXOLUTCS
C TOUHOCTBIO KO KOHCTAHTBI).

dopmyia Vpasuenie (2.46) mpuHUMaeT 6osiee YAOOHBI BUJ, eCIV KpUBYI0 L BHIOpaTh B
BIIIE JJOMaHOM, IIoKasaHHoi Ha Puc. 2.1.

YN

Puc. 2.1. Kpuas naTerpupoBanms L.
IIpn TaxoMm BeIGOpe L mmeem:
z y
u(e,y) = [ M)z + [ Ny (2.47)
To Yo
COOTBeTCTBEHHO, pellleHNe yPaBHeHNS:

u(z,y) =C. (2.48)

18



Muddepennmanbuble ypaBHEHUST 2 Teopemsl
Theorem 2.7

2.7 O06 UHTerpMUpyroIIeM MHOYKIITEIE

Hamomumm BUI MHTETPUPYIOIIETO0 MHOXKITEIIT:
du = pMdz + pNdy. (2.49)
Hanniem ycioBue Toro, 4To du SBISeTCs IIOIHBIM DU depeHIaIoM:

5o M) = 5 (u)

o oM  Ou ON
2 (21 0)
ox Ay oy oz )" (2.50)
1 Ou 1 oup OM ON
N.— .2 _ M.-.22_ZZ =Z7
< u Oy U Oy oy ox <
Slnp
oy
Olnp Olny OM ON
N. — M- - -
e ox oy oy Ox

Taknum o6pa3oM, I HAXOKAEHMS MHETPUPYIOLIET0 MHOKUTENS MBI IIOJyUNM YpaBHEHIE B
. 0,
YACTHBIX [IPOU3BOAHBIX. IHOTHA yHaeTcs Haiitu ero peutenne. Ecmu p = p(x), To 8—’; =0n

ypaBHeHue YpasHenue (2.50) mpuMeT BUL:

oM ON

dln,u oy oz
— . 2.51
dx N ( )

Ecny npaBast uacTh ypaBHeHUs He 3aBUICUT OT Y, TO In (4 HAXOOUTCS MHTETPUPOBAHIIEM.

Theorem 2.8

2.8 O cymiectBoBaHMM perneHusd /1Y BbICHIIX NOPATKOB

Iyctes byHKIMS f(x, Y, y', ey y("_l)) OJHO3HAUHAa, HEIIPEPbIBHA I MIMEET HEIIPpEPhIBHBIE
_ n—1
YaCTHBIE IIPOU3BOIHEIE II0 ¥, y', ey y(" 1) IIpM 3HAUEHUIX apryMeHTOB | X, Y, y('), eny y(() )>
1 BCexX 3HA4YEHMIX, JOCTATOYHO OIM3KUX K HuM. Torga ypaBHEHUE y(") =
f(x, Y, y', y”, ey y(nfl)) MMeeT eqUHCTBEHHOE pPellleHNe, YIOBIETBOPLIOIee HauaJlbHbIM
Ylo—zy =Yo
y/ ‘z:mo :y6
YCIIOBUAM

_ n—1
YD [ =y Y.

Theorem 2.9
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Muddepennmanbuble ypaBHEHNA 2 Teopemsl

2.9 3ameHBI JIRIG: ypaBHeHI/IﬁI, AOIIYCKAIOIINUX ITOHVLKEHIE ITOPpAdKaA

1. Vpasuenus suma y'™) = f(x).
Vpasuenue 3™ = f(z) pelraercs ¢ MOMOIIBIO N-KPATHOTO MHTEIPUPOBAHIIL.
2. VpaBuenus supa O (x, yB) k1) (n) = 0,

3mecs ypaBHeHMe He COOEPKUT QyHKUNM Y U €€ HECKOJIBKIX IT0CIeX0BaTeIbHBIX
(k=1)

npousBoaHbIX y', Y, ..., Y .
Crhemnaem 3aMeHY:
2(z) = y®. (2.52)
Torpa MopsANOK ypaBHEHUS IIOHU3UTCA Ha k eIMHNLL:
®(z,2,7, ..., z("_k)) = 0. (2.53)
Eciiu MbI HatiieM OGOV MHTETPaJl TOTO MOCIEAHEr0 YPaBHEHS
z=p(z,C,Cy,....C,_1), (2.54)
TO Y OTIPEEIUTCS U3 YPABHEHNS:
y®) = o(z,Cp, Cy, ..., C ). (2.55)
3. YpaBHeHns Buga @(y, v,y y(”)) = 0.
3mech ypaBHEHIE He COIEPKUT HE3ABUCUMOIL ITEPEMEHHOI .
[IpumeM y 3a He3aBUCUMYIO IIEPEMEHHYIO I CIeJIaeM 3aMeHY:
¥ =p(y). (2.56)

9TUM MbI IOHU3NM IOPANOK ypaBHeHus Ha 1. B orBere monyunm pyskuo z = z(y).
HaitmeMm, kak ImpeoOpasyloTcs cTapiiye IMpOoM3BOgHbIE IIPY TAKOI 3aMeHe.

Y d | dy d dp dy dp
=—| Z=Z | == =— .= =p-—. 2.57
dr | dx dx (p(y)) dy dz 2 dy ( )
P P

w_ 4, _d dp\ _ dp dp d (dp\ _

(2.58)
dp\® d?
_p (_P) L2 P

dy dy?
4. VpaBHeHNs BUOa %@(w, vy, y("_l)) =0.

3mech JeBas YacTh YpaBHEHNS IIPeCTaBIIeT COOOI IOIHYI0 IIPOM3BOIHYIO IIO .
IIponHTerprpoBaB ypaBHeHUEe, MBI IIOHU3MM €TI0 IIOPSIOK Ha 1.

5. YpaBHeHUd BuAa @(:{:, vy, .., y(”)) = 0, rme ® - omHOpOOHAS QYHKIMS OTHOCUTEIHHO

Y,y sy y™.
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Muddepennmanbuble ypaBHEHNA 2 Teopemsl

®(z,y,y ..., y(")) Ha3bIBAETCS OMHOPOIHO QYHKIMEN k-TO TIOPAIKA OTHOCUTEIHHO
IIepeMeHHBIX ¥, 1, ..., 4""), eciu oHa yIOBIETBOpSIET CIIeXYIOIIEMY CBOICTBY:
@(w,ty,ty’, ...,ty(")) =tk. @(m,y,y’, cey y(")). (2.59)

IIpu y # 0 cxenaeM 3aMeHy IepeMeHHBIX:

/7
=L (2.60)
y
Torma npomsBOgHbIE MPEOOPASYIOTCS 110 CIEXYIOLIEMY IIPABIILY:
y = zy,
(2.61)

y// — Z/y+zy/ — z/y+z2y‘

U rak manee. Takum o6pa3oM, MOpAROK ypaBHeHUsa moHusntced Ha 1. Pynkunio y = 0 crengyer
PaccMOTPETE OTAENIBHO.

Theorem 2.10

2.10 CBoricTBa pelleHII JMHEITHOro ogHopogHoro Y

Theorem 2.11

2.11 Heo6xomgmumoe ycI0BME JIMHEITHOV 3aBMCHMMOCTH PelIeHNIt

Theorem 2.12

2.12 JIocTaToOuHOe ycCJIOBHeE JMHEITHOM 3aBUCIIMOCTH pelleHNUN

Theorem 2.13

2.13 O 6a3suce MPOCTpaHCTBA PelIeHUIT

Theorem 2.14

2.14 OOuxee penreHNe JMHEITHOro HeogHOpoxHOTO /1Y
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Muddepennmanbuble ypaBHEHNA 2 Teopemsl

O6b111ee perreHye JIMHETHOIO HEOJHOPOLHOTO YpaBHEHNS €CTh CYMMa YaCTHOTO PELIeHT

HEOTHOPOTHOTO YpaBHEHNS ¥ OOIIIero peleHysI OQHOPOSHOTO YpaBHEHM.

Theorem 2.15

2.15 IIpuHIUI CyIIe pIO3UIIN

Jlokaknte, uTO eciu @, — pelerue cucreMsl i = P(t)r 4+ ¢, (t), ¢, — pemienue crucremsr
7= P(t)r + g5(t), T0 v; + ¢, — petrerue cucremsl 1 = P(t)r + g, (t) + ¢5(t).

Theorem 2.16

2.16 O ®CP p1sa pa3saM4YHBIX BelleCTBEHHBIX KOPHeII
XapaKTepUCTNUECKOr0o MHOTOUJIEeHA

TakuMm 06pa3oM, eciIy Bce KOPHY XapaKTepUCTIUECKOTO YpaBHEHUs KPaTHOCTI 7

BEILleCTBEHHBI, TO GyHIaMeHTAIbHAs CHCTEMa PELIeHNII COCTOUT U3 CIEeTYIOIX (yHKIIVIL:

M era® | ern®, (2.62)

Theorem 2.17

2.17 O ®CP g KpaTHBIX BellleCTBEHHBIX KOPHeEN
XapaKTepUCTIUYEeCKOr0O MHOTOWIEeHA

Eciu cpeny xopHell ecTh KpaTHBIE, TO I K&KAOTO 13 HUX HY>KHO HAJITU CTOJIBKO
JIMHETHO He3aBYICMMBIX PeIlIeHNI, KaKoBa ero KpaTHOCTh. PaccMoTpuM 3Ty cutyamuro nis

YPaBHEHUSI BTOPOTO IIOPIIKA:
y" + a1y’ +ay=0. (2.63)
Hanuniem xapakTepucTuueckoe ypaBHeHUe:
A2+ a3\ +ay =0. (2.64)
ITycTs \; — KOpeHb BTOPOJI KPATHOCTU XapaKTePUCTUUECKOTO ypaBHeHus. Torma

MVICKPUMIHAHT ypaBHeHNUs paBeH Hymio: D = a? — 4a, = 0. CiemoBaTesbHO,

a
A== 2.
1 5 (2.65)

Az

OpnHo U3 pelreHNII ypaBHeHUs Ypasuenne (2.63) — ato e*1*. HarigeM BTOpoOe peliieHne,

JIMHEITHO He3aBIICUMOE C HIIM. BYIICM JICKATb €TI0 B BIIO€E:
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Y = u(z) - M.

Torpma:
yp = Mo (u' + Ayu),
yh = eM®(u” + 200’ + Au).
IlogcTraBUM Yy, Yo/, Yo» B MICXOMHOE YpaBHEHMeE Y pasHeHE (2.63):
eM?(u” + 22U + A2u) + a1 M (U + A u) + ayuet® =0
seMTlu + (20 +ay) v+ (M4ar+a) =0&

— e’

=0( B cuy Alz—%) =0(B cuny A2+aq At+a,=0)u’

sy =0su=Cr+G.

Bribepem QpyHKIMIO % ClemyommM oopasom: u = . Torma:

Yo = T - eMT,

IIpoBepuM, UTO pelIeHNs Y, U Yo OYAYT JMHENHO He3aBUCUMBIL:

_ ( ez e e

Y1 Y2 — 2\
Aehe eha +)\1xe>‘1$) = e2M? oL (),

W(y,, =
(yl yZ) yi yé

2 TeopeMmsl

(2.66)

(2.67)

(2.68)

(2.69)

(2.70)

(2.71)

Taxum o6pa3oM pyHIaMeHTaIbHas CUCTeMa PellleHUiT I ypaBHeHus Y pastenne (2.63) mMeeT

BUAI:

e)\lz )\11:_

, xe

Theorem 2.18

(2.72)

2.18 JInneitHoe ogHOpoaHOe /IY BTOpOro mopsagka ¢ HOCTOAHHBIMMI

K03 pummenTamMn

Theorem 2.19

2.19 Mertop HeonpeneleHHBIX K03 PUIIIeHTOB

Merop HeompeneneHHbIX KO3(QPUIMEHTOB pabOTaET TOIBKO IS JIMHENHBIX

HEONHOPOJHBIX yPABHEHUII C IIOCTOSSHHBIMY K03 PULIeHTaMM U IIPABOIT UacThio f ()

CIIEMMAJIBHOT'O BMOA.

y™ +a gV 4+ +a,y= f(z),
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TOE Qq, 0y, ..., Gy,

— HEKOTOpPBbIE ITOCTOAHHBIE.

2 TeopeMmsl

B HekoTOpBIX ciIydasx perleHue quddepeHIMAIBHOTO YpaBHeHN YAaeTcs II0R00pars.

CocraBuM TabIuIly BIUOB UACTHBIX PELLIEHNIT AJIs PA3INIHBIX BUJOB IIPABbIX yacrell f(x).

ITpaBag uacts
muddepeHMATEHOTO
ypaBHEHUA

KopHu xapakrepucTuuecKkoro

ypaBHEHUS

Bunpr uacTHOrO peiieHus

1) Yucino 0 He sBIsSETCS
KOpHEM
XapaKTePUCTIUECKOTO
ypaBHEHNS

2) Yucio 0 aBigeTcs KOpHEM
XapaKTepUCTUUYECKOTO

ypaBHEHUS KPATHOCTHU S

1) Yncino « He sBIsgeTCS
KOpHEM
XapaKTePUCTIUECKOTO

ypaBHEHUS

2) Yncio o ABIIAETCSI KOPHEM
XapaKTepICTUUECKOTO

YPaBHEHMA KPATHOCTIL S

P, (z) cos Bz + Q,, () sin Sz

1) Yucna + i beta e
ABIIAIOTCS KOPHAMU
XapaKTePUCTUUECKOTO
ypaBHEHUS

P, (z) cos Bz + Q,(z) sin Bz

2) Ynucna 457 apnarorcs

KOPHAMU
XapaKTepICTUUECKOTO

YPaBHEHMA KPATHOCTIL S

KOpPHIMU A ( P, (x) cos B +
XapaKTepUCTUUECKOTO )., () sin /J’w)
ypaBHEHUSI KPATHOCTH §
1) Yucna o 4 i3 He SIBASIOTCS
KOPHAMU (Pk (z) cos Bz +
XapaKTePUCTIIECKOTO Q. (z) sin ,Bx) er
edT ( Pn( ) cos Bz + ypaBHEHUSA
Q,, (x) sin Bx) 2) Uncna o + ( aBnsoTCs

z ( (T )cosﬂx+
Qp(z )Slnﬂx)

Ta6u. 2.2. Tabnnua BUOOB YaCTHBIX PEeIleHNII A1 Pa3IMUHbIX BIUIOB IPABBIX YacTell

k — nanGonpiuas us cremeneit m u n. P, (x) — 9T0 MOIMHOM CTeIIeHM M C

HeOoIpeaeIeHHBIMY KO3 DUIIeHTaMMU.

Ecnu nipaBast uacts ypaBHeHUs f(Z) eCTh CyMMa ABYX IIPABBIX UACTENl CIIELUATIBHOTO

Bupa: f(z) =

fi1(z) + fo(x), TO UacTHOE pellIeHNUE CleyeT UCKATH B BUJIE CyMMBI JABYX

pewmrenuit: ¥; + Y, roe Y) oTBeuaer mpaBoii uactu f;, a Y, oTBeyaer mpaBoii uacTtu fo.
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Theorem 2.20

2.20 MeTop MCKIIOYEeHNA NI pemieHns cucrembl Y

MeTOII JICKIIIOUEHVISI aHAJIOTTYEH COOTBETCTBYIOILIEMY anre6pamquKOMy MeETonay.

Ecnn ogHO 13 ypaBHEHUII CHCTEMBI ITO3BOJIET BHIPA3UTh OMHY U3 HEM3BECTHBIX (PyHKIIMIL
uepes ApyTHe, TO CAeIaeM 3TO I ITOACTAaBMM JaHHOE BBIpa)KeHIe B OCTaJIbHbIEe YpaBHEeHMA. MBI
nonyunm cucremy us (n — 1)-ro ypasuenns ¢ (n — 1)-oit HensBecTHOI PpyHKUMer. OnHAKO,
MOpAOOK ypaBHeHMII Bo3pacTeT. [loBTopsieM 3Ty ImpolleAypy A0 TeX II0p, II0Ka He MpUAEeM K
OJJHOMY YpaBHEHMIO 11-TO IopAfKa. Pelraem sTo ypaBHeHIe I Yepes ero pellleHle BbIpakaeM
OCTaJIbHBIE MICKOMBIE (PYHKITUIL.

IIponnnrocTpupyeM 3TOT METON Ha IIPMMeEpPE CUCTEMBI IBYX YPaBHEHIIL:

d
%zayl—l—byz—l—f(w)

dy,

(2.74)
az cyy +dy, + g(x).

3necs a, b, ¢, d — nocrossuuble K0apduuumentsr, a f(z) u g(x) — 3aganuble PyHKUMN. Y, () U

Yo (x) — MckoMBIE PyHKIUN.

BrIpasuM y, 13 IIepBOTro ypaBHEHMS CUCTeMBbI Y pasrere (2.74):

w=i (T rm) e

ITomcTaBUM BO BTOpOE YpaBHEHME CUCTEeMBI Y pasienie (2.74) BMECTO Y, IPaByI0 YacThb

Ypagsrenue (2.75), molyuaeM ypaBHEHI€ BTOPOTO IOPSAKA OTHOCUTENBHO Y (T ):

A%y | pin

2L+ B+ Cy, + Pla) =, (2.76)

rae A, B, C' - HeKOTOpBIe IIOCTOSTHHBIE.

Pewnas ypaBHenue Vpaeuenue (2.76), HaxoguM y; = y; (z). [logcraBum HaiineHHOE

BBIpa)KE€HME I Y U % B Ypasuenue (2.75), HALAEM Yy.

Theorem 2.21

2.21 MeTop Jiiepa AJid pellieHIsA OGHOPOSHBIX JMHEIHBIX cucteM [{Y
IPU IPOCTHIX COOCTBEHHBIX UMCIIAX

MatpuuHBIiI MeTO MPUMEHNM TOJIBKO IS JIMHETHBIX OTHOPOJHBIX CUCTEM yPaBHEHMII C
IIOCTOSIHHBIMY K03 duiimeHTamMu:
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Y) = a11Y; +a19Ys + .- + a1y,
Y3 = A91Y; + oo¥s + ... + A9, Y, (2.77)

y’;L =0,1Y + An2Y2 + <Oy Yn -

I7ie a;; — HEKOTOpbIe IIOCTOSHHBIE KO3(pUIMEHTBI.

Cucrema ypaBHeHui1 YpasHene (2.77) MOXeT ObITh 3aIliIcCaHa B MATPMYHOM BUTIE:

Y’ =AY, (2.78)
e BBeJEHbI CIIeAyIoIe 0003HAUeHIS:
Yy Y1
yl T e G y}
Y=|"2], A=]: ~ |, Y=/["2] (2.79)
y an1 - Qpp y'/
n n
Marpura-cronberr
Y = 0y, 0y, 60y, (2.80)

Has3bIBAeTCs YACTHBIM pellleHIeM MAaTPUUYHOTO ypaBHeHus YpasHenue (2.78) Ha MHTepBae

(a,b), eciut ee moxcTaHOBKA B ypaBHEHIE o0palljaeT ero B TOKAECTBO [ist II00bIX T € (a, b).

CucreMa n 4aCTHBIX pellIeHNII YpaBHeHMs Y pasueHne (2.78)

1 n
vy (2) 0" (@)
(2) (n)
Yiz)=|¥% @] . Y@=|% @ (2.81)
() yn ()
HasbIBaeTCs QpyHAAMEeHTAIbHOI Ha uHTepBate (a,b), ecnu dyuxkuun Y (), ......, Y ()
JIMHEHO He3aBUCUMBIL.
JluHeitHas He3aBUCUMOCTD pelteHuit Y (), ...... , Y (z) ypaBHenus Vpasuenne (2.78)
9KBIBAJIEHTHA TOMY, UTO OIpeeIUTeNb
1 2 n
w (@) 11 @) - (@)
1 2
v (@) v (@) - 95" () + 0Vz € (a,b) (2.82)
W(2) 42 (@) - (@)
Bes nokasarenbcTBa.
3amernm, uro BepxHme nHmekcs (1), (2), ...... , (n) — 210 HOMep uacTHOrO pelreHus (a He

MIOPSATOK IIPOM3BOTHOI).

O61ee perreHne MaTpuuHOro auddepeHIMAIBHOrO ypaBHeHUA Y papuene (2.78) ecTh
JMHeTHAS KOMOVHAIMS QYHIAMEHTAIBHON CUCTEMBI PELIEHNIT C IPOU3BOIBHBIMU
koapduimenramu Cj, G, ...... C,:

n*

Y(z) =C Y (z) + CYy(x) + ... +C.Y, (x). (2.83)
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B 0OBIYHOI 3aIIMICK 9TO JAeT pellleHNe CUCTeMBI Y pasrHenue (2.77):

1 (z) = Oyt (@) + G (@) + oo + G (2)
(2.84)

Un(2) = Qo (2) + Gy (@) + coooeo + G (2)

Proof. [ns toro, uro6GBI IIPOBEPUTH, UTO YpasHeHue (2.83) ecTh 00IIEe pEIIEHNIE, HYKHO

yOenuUThCsA B TOM, UTO IJIS JIFOOBIX HAUAIbHBIX YCIOBUI Y (Z(), Yo (Zg), - ..o s Un (To) MOKHO
Haiitu 3Hauenns C, G, ...... , C,, Takume, 4TO pelleHne Ypasrenne (2.83) OygeT uMm
yXOBJIETBOPST:

Y1 (z9) = Cyyt” (@) + coovee + Cot™ ()

............ (2.85)
Yn(To) = 012/%1)(330) + o +C, %n) (7).

Cucrema Ypasuenue (2.85) — 9T0 HeOTHOPOIHAs JIMHEHAS CUCTeMa aoTebpanuecKux
ypaBHenuit oTHocuteasHo Cy, Oy, ...... , C,,. E€ onpenennTess OTiIMUYeH OT HYJIS IIPY JII060M
x (popmyia Ypasuene (2.82)), mosToMy cucrema Ypasuerue (2.85) OZHO3HAUHO

paspelunma npu J6bIX Y1 (Lg), «.-. s Yy, (Tg), UTO U JOKA3BIBAET TEOPEMY.

B cooTBeTCTBUM C TEOpEMOIL, OIS PellIeHNsI CIUCTeMbI Y pasHeH e (2.77) HaM TpebyeTcs
HaiTu QyHIAMEHTAIBHYIO CICTEMY pellleHnit ypaBHeHus Ypasuenue (2.78). Bymem mckartb
pelLlIeHNs B cIeqyIoleM BUe:

3!
Y(z)= é? e, L EeR (2.86)
€n
IlopgcraBum YpasHuenne (2.86) B YpaBuenue (2.78):
& &
Pde = Al i e (2.87)
& €n
Coxkparras Ha e, IPUXOIUM K alre6panueckoMy MaTPUUHOMY ypPaBHEHIIO:
31
AX =)2X, r1me X=|:
¢, (2.88)

< (A-INX =0.

MEeI mosyunmin 3agady o COGCTBEHHBIX BEKTOPAxX 1 COOCTBEHHBIX 3HAUEHMAX MATPUIBI A.
YcnoBue cylecTBOBaHMS HETPUBIAIBHOTO pellleHNs ypaBHeHMs Y pasHene (2.88) TaKoBo:

det(A — AI) = 0. (2.89)
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Kopuu \; aToro anre6panuecKoro ypaBHeHIs 1-OIi CTEIIEHN — 3TO COOCTBeHHBbIE 3HAUeHN
MaTpuisl A, a HeTpUBUANbHbIE pellleHNsl ypaBHeHus Y pasHerye (2.88), COOTBETCTBYIOIIE A =

A; — 9TO COOCTBEHHBIE BEKTOPHL.

[TomcTaHOBKA COOCTBEHHOTO BEKTOPA I COOCTBEHHOTO 3HAUEHMS B GOPMYITY
Ypasuenue (2.86) mact HaM pelueHye Y () MaTpUYHOro ypaBHeHus Ypasuenue (2.78) (mm
cucremsl Ypasuenue (2.77)). Takum o0pa3om, IMHENHO HE3ABUCUMBIE COOCTBEHHBIE BEKTOPBI

MaTpuiel A maror HaM BeKTOp-pyHKIUM U3 GyHIAMEHTAIBHO CICTEMbI pellIeHIIL.

[ Toro, YTOGRI MONIyUNTh BCIO PYHIAMEHTAIBHYIO CICTEMY, TpeOyeTcs HallTu 1

JIMTHEITHO HE3aBMCUMBIX PEIIeHUIL.

IIpu paccmoTpennu Teopun cucreM anddepeHINANBHBIX YpaBHEHNIT MbI 0003HaUAIN
He3aBUCUMYIO IIepeMEeHHYIO uepes &, a QYHKIIII UePe3 Yq, Yo, ... , Yy, AJI TOTO, UTOOBI
MIPOIEMOHCTPMPOBATH CXOICTBO C TEOPIUEI OTHETbHbIX A depeHIMAaTbHbIX YpaBHeHuIL. [Ipn
pelleHNUN 3afayu Mbl OyeM MCII0JIb30BaTh IJIs He3aBUCUMOIL IlepeMeHHOII 6osee
TpagMUIIOHHOe 0003HaueHMe ¢, a A QyHKIuil — 0003HAUeHNS &, Y, Z BO U30eKaHUe
M3NMIITHEe MHAeKCAIUN.

Theorem 2.22

2.22 Mertop Jiliepa Ajid pellieHUs OAHOPOSHBIX JIMHEITHbIX cucteM 1Y
P KPAaTHBIX COOCTBEHHBIX YMCJIAX

Ecnn xopeHb A = )\ UMeeT KpaTHOCTH S, TO €My HOJLKHBI COOTBETCTBOBATD S JIMHEIHO
He3aBMCUMBIX perreruit. Oxuol GyHkimm e*o? 6ymer HemocTatouno. B aToM citydae miem
pellieHne B BUAE:

Y, etot + Yotetot + ... + Y, t5"tetot, (2.90)

[ onpeneneHNs KOOPAWHAT BEKTOPOB Y7, Yo, ...... , Y, moxcraBiseM Ypasuenue (2.90) B
VICXOQHYIO CUCTEMY YPaBHEHUIT U B K&KJOM U3 YpaBHEHUII IpUpaBHUBaeM K03 UIIeHThI
NP JIMHETHO He3aBUCUMBIX (PYHKIUAX.

Theorem 2.23

2.23 OO1zee peunreHNne JMHEITHON HEOTHOPOXHOI cucTteMbl [V

Theorem 2.24

2.24 CsoiicTBa nmpeoopa3oBanus Jlamiaca
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1. L(af + Bg) = aLf + fLg — nuneitHOCTS;
JloKa3aTeqbCTBO OUEBUIHO B CUITY JIMHETHOCTY MHTETpaJIa.

2. L(f(at)) = %F(%), a > 0 — Teopema omo6us;

Proof.

3ameHa: s = at = ds = adt.

3. L(e* f(t)) = F(p — a) - TeopeMa cMeILeHNS;

Proof.

L(eot £(t)) = / " vt f(t)dt — / " e~ 0-0)t f(1)dt = F(p — a).
0 0

4. L(f(t—a)) = e *PF(p), a> 0 - Teopema 3ama3bIBaHMs;
Proof.
L(f(t—a)) = Pt —a)dt =
(=)= [~ erse-a

3ameHa: S =t —a = ds = dt.

f(s)=0mpus <0

Theorem 2.25

2.25 O pudPepeHUpOBaHUY N300pAYKEHUS
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L(tf(t)) = —@F(p) (2.97)
Lt f(t)) = <—1>”d%F<p> (2.98)

Proof. IIpomuddepenmnupyem o napamerpy p popmyiy Ypasuenne (2.45) u3 onpeneaeHns
npeobpasoBanns Jlamnaca:

F(p) = / h f(t)e Pdt,
0

] N (2.99)
GO = [ eresod = —Lesw)
CoOTBETCTBEHHO,
L) = (1 [ e = (1)L ), (2.100)
dp™ o
|
Theorem 2.26
2.26 O mudPepeHnpoBaHN OPUTMHATIA
L(f(t)) = pF(p) — f(0). (2.101)
L(f™(t)) = p"F(p) —p"*£(0) = p" 2 f'(0) — ... = f7D(0). (2.102)
Proof.
LUF (1)) = / T p e ridto (2.103)
0
u=eP, du=—pePdt, v=f(t), dv=f'(t)dt (2.104)
& F0e [+ [ S0t = —F(0) +pF(p). (2.105)
0
dopmyia arsa f) (t) moxasbIBaeTcs MO MHAYKITAIL.
Basa nposepena (n = 1). Ilepexog n — n + 1:
L) = [ fr e e (2.106)
0
u=eP, du=—pePidt, v=fM(t), dv=f"r(t)dt (2.107)
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& fMWe [ p [ fMB Mt =
0

’ e 2.108
— —f©0) + p(p" F(p) — p I £(0) = g2 (0) — - V@) = (2109
= p"*VF(p) —p™ f(0) —p" ' f/(0) — ... — F™(0).

[
Theorem 2.27
2.27 O06 MHTErpUpPOBAHUN OPUTUHAJIA
t
L(/ f(T)dT) = M (2.109)
0 p
Proof. BBemeM ¢yHKIm0 XeBucaiiga o cleqyIoiieMy IpaBuiTy:
1, >0
o(t) = {0, ‘2o (2.110)
Torna:

~——
=1 mpu 0<7<t

t oo 1
L(/O f<T)dT> ) /0 oL=1) - f(r)dr | = L(Ox ) = LOL(S) = SF(@11)
|
Theorem 2.28

2.28 IIpeooOpasoBanusa Jlamraca mpocreiimmx QyHKIMIT

IIpeo6pasoBanue Jlamraca onpemeaeHo TOIBKO A QYHKIINIL, 0OPAIAOIXCsI B HOJb
mpu t < 0. IToaTomy BbInmChIBast TaGImITy M300payKeHMIT, OyeM CUMTATh, UTO QYHKIMN-
OpUTrMHAIBI 0OPAIAOTCS B HOJIb Ha OTPULATEIHHO ITOJYOCH.

1. L(1) = jlg;
Proof.

[ele] e—pt
L(1) :/ et ldt = — | = - (2.112)
0 —bp
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