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I Определения

Definition 1.1 

1.1 Дифференциальное уравнение

Обыкновенным дифференциальным уравнением первого порядка называют 

уравнение вида

𝐹(𝑥, 𝑦, 𝑦′) = 0. (1.1)

ИЛИ
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Дифференциальным уравнением называется уравнение, связывающее независимую 

переменную 𝑥, искомую функцию 𝑦 = 𝑦(𝑥) и её производные 𝑦′, 𝑦′′, …, 𝑦(𝑛).

Definition 1.2 

1.2 Решение дифференциального уравнения, общее решение

Функция 𝜑 - решение уравнения, если

𝜑 ∈ 𝐶1(𝑎, 𝑏);
𝐹 (𝑥, 𝜑(𝑥), 𝜑′(𝑥)) ≡ 0  на (𝑎, 𝑏)

(1.2)

Другими словами, решением уравнения называют гладкую функцию 𝜑, определённую 

на интервале (𝑎, 𝑏), подстановка которой вместо 𝑦 обращает уравнение в тождество на 

(𝑎, 𝑏).

Общим решением уравнения называют множество всех его решений.

ИЛИ

Функция 𝑦 = 𝜑(𝑥) является решением дифференциального уравнения, если её 

подстановка в уравнение обращает его в тождество.

Definition 1.3 

1.3 Задача Коши

Задачей Коши или начальной задачей для нормального уравнения

𝑦′ = 𝑓(𝑥, 𝑦) (1.3)

называют задачу нахождения его решения, удовлетворяющего начальному условию

𝑦(𝑥0) = 𝑦0. (1.4)

Пара чисел (𝑥0, 𝑦0) при этом называется начальными данными.

Definition 1.4 

1.4 Уравнение с разделяющимися переменными

Уравнение в дифференциалах вида

𝑃(𝑥)𝑑𝑥 + 𝑄(𝑦)𝑑𝑦 = 0 (1.5)

называют уравнением с разделёнными переменными.
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Такое название мотивировано тем, что каждое его слагаемое зависит только от 

одной переменной.

Уравнение вида

𝑝1(𝑥)𝑞1(𝑦)𝑑𝑥 + 𝑝2(𝑥)𝑞2(𝑦)𝑑𝑦 = 0 (1.6)

называют уравнением с разделяющимися переменными.

ИЛИ

Если уравнение Φ(𝑥, 𝑦, 𝑦′) = 0 с помощью алгебраических преобразований удается 

привести к виду

𝑦′ = 𝑔(𝑥) ⋅ ℎ(𝑦) (1.7)

или

𝑀1(𝑥)𝑀2(𝑦)𝑑𝑥 + 𝑁1(𝑥)𝑁2(𝑦)𝑑𝑦 = 0, (1.8)

то оно называется уравнением с разделяющимися переменными.

Definition 1.5 

1.5 Однородная функция

Функция 𝐹(𝑥, 𝑦) называется однородной функцией степени 𝛼, если при всех 

допустимых 𝑡, 𝑥 и 𝑦 верно равенство

𝐹(𝑡𝑥, 𝑡𝑦) = 𝑡𝛼𝐹(𝑥, 𝑦). (1.9)

Пример однородных функций: 𝑥 + 𝑦 + 𝑧 (первой степени), 𝑥2 + 3𝑥𝑦 + 𝑦2 (второй 

степени), 𝑦
𝑥 cos 𝑥

𝑦  (нулевой степени), 
√

𝑥+𝑦
𝑥2+𝑦2  (степени −3

2 ).

Definition 1.6 

1.6 Однородное ДУ первого порядка

Пусть 𝑃  и 𝑄 - однородные функции одинаковой степени. Тогда уравнение вида

𝑃(𝑥, 𝑦)𝑑𝑥 + 𝑄(𝑥, 𝑦)𝑑𝑦 = 0 (1.10)

называется однородным уравнением.

ИЛИ

Дифференциальное уравнение первого порядка называется однородным, если его 

можно привести к виду:

𝑦′ = 𝑓(𝑦
𝑥

) (1.11)
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Definition 1.7 

1.7 Линейное ДУ первого порядка

Дифференциальное уравнение вида

𝑦′ = 𝑝(𝑥)𝑦 + 𝑞(𝑥), (1.12)

называется линейным уравнением первого порядка.

Название линейное мотивировано тем, что оно составлено из многочленов первой 

степени по отношению к символам 𝑦 и 𝑦′.

ИЛИ

Линейным уравнением первого порядка называется уравнение вида

𝑦′ + 𝑝(𝑥)𝑦 = 𝑞(𝑥), (1.13)

где 𝑝(𝑥), 𝑞(𝑥) – заданные функции.

Definition 1.8 

1.8 Уравнение Бернулли

Уравнением Бернулли называют уравнение вида

𝑦′ = 𝑝(𝑥)𝑦 + 𝑞(𝑥)𝑦𝛼, (1.14)

где 𝛼 ∈ ℝ ∖ {0, 1}.

Разделив данное уравнение на 𝑦𝛼, находим

𝑦′

𝑦𝛼 = 𝑝(𝑥)𝑦1−𝛼 + 𝑞(𝑥). (1.15)

Отсюда видно, что замена 𝑧 = 𝑦1−𝛼 сводит уравнение к линейному.

ИЛИ

Уравнением Бернулли называется уравнение вида

𝑦′ + 𝑝(𝑥)𝑦 = 𝑞(𝑥)𝑦𝑎,   где 𝑎 = const, 𝑎 ≠ 0, 𝑎 ≠ 1 (1.16)

Definition 1.9 

1.9 Уравнение в полных дифференциалах

Уравнение
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𝑃(𝑥, 𝑦)𝑑𝑥 + 𝑄(𝑥, 𝑦)𝑑𝑦 = 0 (1.17)

называют уравнением в полных дифференциалах, если существует такая функция 𝑢, что

𝑑𝑢 = 𝑃(𝑥, 𝑦)𝑑𝑥 + 𝑄(𝑥, 𝑦)𝑑𝑦, (1.18)

то есть 𝑢′
𝑥 = 𝑃, 𝑢′

𝑦 = 𝑄.

ИЛИ

Дифференциальное уравнение вида

𝑀(𝑥, 𝑦)𝑑𝑥 + 𝑁(𝑥, 𝑦)𝑑𝑥 = 0 (1.19)

называется уравнением в полных дифференциалах, если его левая часть представляет 

собой полный дифференциал некоторой функции 𝑢(𝑥, 𝑦):

𝑀𝑑𝑥 + 𝑁𝑑𝑦 = 𝑑𝑢 = 𝜕𝑢
𝜕𝑥

𝑑𝑥 + 𝜕𝑢
𝜕𝑦

𝑑𝑦. (1.20)

Условие того, что 𝑀𝑑𝑥 + 𝑁𝑑𝑦 представляет собой полный дифференциал:

𝜕𝑀
𝜕𝑦

= 𝜕𝑁
𝜕𝑥

. (1.21)

Definition 1.10 

1.10 Особое решение ДУ

Решение 𝑦 = 𝜑(𝑥) дифференциального уравнения

Φ(𝑥, 𝑦, 𝑦′) = 0 (1.22)

называется особым, если в каждой его точке нарушается свойство единственности, то 

есть если через каждую его точку (𝑥0, 𝑦0) кроме этого решения проходит и другое 

решение, имеющее в точке (𝑥0, 𝑦0) ту же касательную, что и решение 𝑦 = 𝜑(𝑥), но не 

совпадающее с ним в сколь угодно малой окрестности (𝑥0, 𝑦0). График особого решения 

будем называть особой интегральной кривой уравнения.

ИЛИ

Решение 𝜑 на (𝑎, 𝑏) уравнения 𝑦′ = 𝑓(𝑥, 𝑦) называется особым, если для любой точки 

𝑥0 ∈ (𝑎, 𝑏) найдется решение 𝜓 того же уравнения, такое что

𝜑(𝑥0) = 𝜓(𝑥0) (1.23)

при этом 𝜑 ≡ 𝜓 в любой сколь угодно малой окрестности точки 𝑥0.

Более кратко это выражают словами: интегральная кривая уравнения 𝑦′ = 𝑓(𝑥, 𝑦) 
является особой, если в каждой её точке нарушается единственность решения задачи 

Коши.
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Definition 1.11 

1.11 ДУ высшего порядка, задача Коши для него

Дифференциальным уравнением 𝑛-го порядка называют уравнение вида

𝐹(𝑥, 𝑦, 𝑦′, …, 𝑦(𝑛)) = 0. (1.24)

Функция 𝜑 – решение уравнения на (𝑎, 𝑏), если

𝜑 ∈ 𝐶𝑛(𝑎, 𝑏);

𝐹(𝑥, 𝜑(𝑥), 𝜑′(𝑥), …, 𝜑(𝑛)(𝑥)) ≡ 0  на (𝑎, 𝑏).
(1.25)

Каноническим уравнением будем называть уравнение

𝑦(𝑛) = 𝑓(𝑥, 𝑦, 𝑦′, …, 𝑦(𝑛−1)), (1.26)

разрешённое относительно старшей производной.

Задачей Коши для канонического уравнения называют задачу нахождения его 

решения, удовлетворяющего начальным условиям

𝑦(𝑥0) = 𝑦0, 𝑦′(𝑥0) = 𝑦′
0, …, 𝑦(𝑛−1)(𝑥0) = 𝑦(𝑛−1)

0 . (1.27)

Набор чисел (𝑥0, 𝑦0, 𝑦′
0, …, 𝑦(𝑛−1)

0 ) при этом называют начальными данными.

ИЛИ

Обыкновенное дифференциальное уравнение 𝑛-го порядка имеет вид

Φ(𝑥, 𝑦, 𝑦′, 𝑦″, …, 𝑦(𝑛)) = 0, (1.28)

или в решенном относительно старшей производной 𝑦(𝑛), вид

𝑦(𝑛) = 𝑓(𝑥, 𝑦, 𝑦′, 𝑦″, …, 𝑦(𝑛−1)). (1.29)

Всякая функция 𝑦(𝑥), имеющая непрерывные производные вплоть до 𝑛-го порядка и 

удовлетворяющая уравнению, называется решением этого уравнения, а сама задача 

нахождения решений дифференциального уравнения называется задачей 

интегрирования дифференциального уравнения.

Definition 1.12 

1.12 Линейное ДУ 𝑛-го порядка. Однородное, неоднородное

Линейным дифференциальным уравнением порядка 𝑛 называется уравнение вида

𝑦(𝑛) + 𝑝𝑛−1(𝑡)𝑦(𝑛−1) + … + 𝑝1(𝑡) ̇𝑦 + 𝑝0(𝑡)𝑦 = 𝑞(𝑡), (1.30)

где 𝑝0, 𝑝1, …, 𝑝𝑛−1, 𝑞 ∈ 𝐶(𝑎, 𝑏).
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Дифференциальные уравнения 1 Определения

Если 𝑞 ≡ 0 на (𝑎, 𝑏), то уравнение, то есть

𝑦(𝑛) + 𝑝𝑛−1(𝑡)𝑦(𝑛−1) + … + 𝑝1(𝑡) ̇𝑦 + 𝑝0(𝑡)𝑦 = 0, (1.31)

называется однородным, в противном случае – неоднородным.

ИЛИ

Уравнение вида

𝑦(𝑛) + 𝑎1(𝑥)𝑦(𝑛−1) + … + 𝑎𝑛−1(𝑥)𝑦′ + 𝑎𝑛(𝑥)𝑦 = 0 (1.32)

называется линейным однородным дифференциальным уравнением 𝑛-го порядка.

Уравнение вида

𝑦(𝑛) + 𝑎1(𝑥)𝑦(𝑛−1) + … + 𝑎𝑛−1(𝑥)𝑦′ + 𝑎𝑛(𝑥)𝑦 = 𝑓(𝑥) (1.33)

называется линейным неоднородным дифференциальным уравнением 𝑛-го порядка.

Definition 1.13 

1.13 Линейная независимость функций

Definition 1.14 

1.14 Определитель Вронского

Определителем Вронского (или вронскианом) функций 𝑦1, 𝑦2, …, 𝑦𝑛 ∈ 𝐶(𝑛−1)(𝑎, 𝑏) 
называют

𝑊(𝑡) ≔

|



 𝑦1(𝑡)

̇𝑦1(𝑡)
…

𝑦(𝑛−1)(𝑡)

𝑦2(𝑡)
̇𝑦2(𝑡)
…

𝑦(𝑛−1)
2

…
…
…
…

𝑦𝑛(𝑡)
̇𝑦𝑛(𝑡)
…

𝑦(𝑛−1)
𝑛 (𝑡)|






(1.34)

Definition 1.15 

1.15 Фундаментальная система решений

Фундаментальной системой решений системы уравнений называется совокупность 

её 𝑛 линейно независимых решений.

ИЛИ
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Дифференциальные уравнения 1 Определения

Любой набор из 𝑛 линейно независимых решений 𝑦1(𝑥), 𝑦2(𝑥), …, 𝑦𝑛(𝑥) уравнения 

𝑦(𝑛) + 𝑎1(𝑥)𝑦(𝑛−1) + … + 𝑎𝑛−1(𝑥)𝑦′ + 𝑎𝑛(𝑥)𝑦 = 0 называется фундаментальной системой 

решений этого уравнения.

Definition 1.16 

1.16 Характеристический многочлен

Многочлен

𝑝(𝜆) ≔ 𝜆𝑛 + 𝑎𝑛−1𝜆𝑛−1 + … + 𝑎1𝜆 + 𝑎0 (1.35)

называется характеристическим многочленом уравнения 𝑦(𝑛) + 𝑎𝑛−1𝑦(𝑛−1) + … + 𝑎1 ̇𝑦 +
𝑎0𝑦 = 𝑓(𝑡), а его корни – характеристическими числами того же уравнения.

Definition 1.17 

1.17 Система ДУ, решение системы

Система дифференциальных уравнений – это набор дифференциальных уравнений, 

решаемых совместно. Решение системы – это набор функций, который удовлетворяет 

всем уравнениям системы. Такая форма записи системы называется нормальной формой 

Коши:

{


𝑑𝑦1

𝑑𝑥 = 𝑓1(𝑥, 𝑦1, 𝑦2, …, 𝑦𝑛)
…
𝑑𝑦𝑛
𝑑𝑥 = 𝑓𝑛(𝑥, 𝑦1, 𝑦2, …, 𝑦𝑛)

(1.36)

Решением системы называется совокупность 𝑛 функций

𝑦𝑖 = 𝜓𝑖(𝑥),  𝑖 = 1, 2, …, 𝑛 (1.37)

таких, что при подстановке их в уравнения системы эти уравнения обращаются в 

тождества относительно 𝑥. При этом функции 𝜓𝑖(𝑥) предполагаются непрерывно 

дифференцируемыми.

ИЛИ

Нормальной системой дифференциальных уравнений порядка 𝑛 называется система 

уравнений вида

{

 ̇𝑥1 = 𝑓1(𝑡, 𝑥1, …, 𝑥𝑛)

…
̇𝑥𝑛 = 𝑓𝑛(𝑡, 𝑥1, …, 𝑥𝑛)

. (1.38)

Если ввести в рассмотрение векторы
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Дифференциальные уравнения 1 Определения

𝑟 =
(

𝑥1

…
𝑥𝑛)


,  𝑓(𝑡, 𝑟) =

(

𝑓1(𝑡, 𝑟)

…
𝑓𝑛(𝑡, 𝑟))


, (1.39)

то систему можно компактно записать в виде одного 𝑛-мерного уравнения

̇𝑟 = 𝑓(𝑡, 𝑟). (1.40)

Вектор-функция 𝜑 - решение системы на (𝑎, 𝑏), если

𝜑 ∈ 𝐶1((𝑎, 𝑏) → ℝ𝑛);
𝜑̇(𝑡) ≡ 𝑓(𝑡, 𝜑(𝑡))  на (𝑎, 𝑏).

(1.41)

Definition 1.18 

1.18 Линейная однородная и неоднородная система ДУ

Линейной системой дифференциальных уравнений называют систему вида

̇𝑟 = 𝑃(𝑡)𝑟 + 𝑞(𝑡), (1.42)

где 𝑃 ∈ 𝑀𝑛(𝐶(𝑎, 𝑏)),  𝑞 ∈ 𝐶((𝑎, 𝑏) → ℝ𝑛).

Если 𝑞 ≡ 0 на (𝑎, 𝑏), то система, то есть

̇𝑟 = 𝑃(𝑡)𝑟, (1.43)

называется однородной, в противном случае – неоднородной.

Definition 1.19 

1.19 Функция оригинал

Функцией-оригиналом называется комплекснозначная функция 𝑓(𝑡) вещественной 

переменной 𝑡, удовлетворяющая следующим условиям:

• 𝑓(𝑡) = 0, если 𝑡 < 0;

• 𝑓(𝑡) интегрируема на любом конечном интервале оси 𝑡;
• с возрастанием 𝑡 модуль функции 𝑓(𝑡) растет не быстрее некоторой показательной 

функции, то есть существуют числа 𝑀 > 0 и 𝑠0 ≥ 0 такие, что для всех 𝑡 имеем:

|𝑓(𝑡)| ≤ 𝑀𝑒𝑠0𝑡. (1.44)

Definition 1.20 

1.20 Преобразование Лапласа
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Преобразованием Лапласа 𝐿 функции-оригинала 𝑓(𝑡), заданной на [0, ∞), 
называется преобразование вида:

(𝐿𝑓)(𝑝) = 𝐹(𝑝) = ∫
∞

0
𝑓(𝑡)𝑒−𝑝𝑡𝑑𝑡, (1.45)

где образ функции 𝑓  будем обозначать за 𝐹(𝑝). Функцию 𝐹(𝑝) называют изображением 

функции-оригинала 𝑓(𝑡).
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II Теоремы

Theorem 2.1 

2.1 О существовании решения ДУ

Если функция 𝑓(𝑥, 𝑦) непрерывна и имеет непрерывную частную производную по 𝑦 

в области Ω, то через каждую точку, принадлежащую Ω, проходит одна и только одна 

интегральная кривая уравнения 𝑦′ = 𝑑𝑦
𝑑𝑥 = 𝑓(𝑥, 𝑦). Или: то для любой точки (𝑥0, 𝑦0) ∈ Ω 

существует единственное решение 𝑦 = 𝑦(𝑥) уравнения, удовлетворяющее условию: 

𝑦|𝑥=𝑥0
= 𝑦0.

Theorem 2.2 

2.2 Решение однородного дифференциального уравнения

Сведем уравнение Уравнение (2.11) к уравнению с разделяющимися переменными.

Для этого сделаем замену:

𝑦
𝑥

= 𝑢 ⇔ 𝑦 = 𝑢𝑥. (2.1)

Следовательно,

𝑦′ = 𝑢′ ⋅ 𝑥 + 𝑢,  𝑑𝑦 = 𝑢𝑑𝑥 + 𝑥𝑑𝑢. (2.2)

Подставим 𝑦 и 𝑦′ в уравнение Уравнение (2.11):

𝑢′ ⋅ 𝑥 + 𝑢 = 𝑓(𝑢) ⇔ 𝑢′ ⋅ 𝑥 = 𝑓(𝑢) − 𝑢 ⇔ 𝑑𝑢
𝑑𝑥

⋅ 𝑥 = 𝑓(𝑢) − 𝑢 ⇔

⇔ 𝑑𝑢
𝑓(𝑢) − 𝑢

= 𝑑𝑥
𝑥

⇔ ∫ 𝑑𝑢
𝑓(𝑢) − 𝑢

= ln|𝑥| + ln 𝐶1 ⇔ 𝑥 = 𝑒∫ 𝑑𝑢
𝑓(𝑢)−𝑢 .

(2.3)

Как определить, что уравнение однородное?

С помощью метода размерностей.

Припишем функции 𝑦, переменной 𝑥 и их дифференциалам некоторые размерности. 

Например, метры:

𝑥 ∼ м,  𝑦 ∼ м,  𝑑𝑥 ∼ м,  𝑑𝑦 ∼ м. (2.4)

Производная 𝑦′ = 𝑑𝑦
𝑑𝑥 ∼ 1 – безразмерная величина.

Для трансцендентных функций (то есть функций, не являющихся алгебраическими: 

sin 𝑥, cos 𝑥, tg 𝑥, ctg 𝑥, 𝑒𝑥, 𝑎𝑥, ln 𝑥, arcsin 𝑥, arccos 𝑥, arctan 𝑥, arccot 𝑥) в качестве аргумента 

должна стоять безразмерная величина: 𝑒
𝑦
𝑥 , tg(𝑦

𝑥) и так далее.
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Уравнение будет однородным, если в нем складываются величины одной 

размерности.

Например:

(𝑥2 + 𝑥𝑦)𝑦′ = 𝑥√𝑥2 − 𝑦2 + 𝑥𝑦 + 𝑦2,

(м2 + м ⋅ м) ⋅ 1 = м ⋅
√

м2 − м2 + м ⋅ м + м2.
(2.5)

Следовательно, уравнение однородное.

Theorem 2.3 

2.3 О решении линейного однородного уравнения

Theorem 2.4 

2.4 Метод Лагранжа (вариации произвольной постоянной)

Рассмотрим уравнение второго порядка:

𝑦″ + 𝑎1(𝑥)𝑦′ + 𝑎2(𝑥)𝑦 = 𝑓(𝑥). (2.6)

Пусть общее решение соответствующего однородного уравнения имеет вид:

𝑦 = 𝐶1𝑦1 + 𝐶2𝑦2, (2.7)

где 𝑦1, 𝑦2 – линейно независимые решения однородного уравнения, 𝐶1, 𝐶2 – 

произвольные постоянные.

Будем искать частное решение ЛНДУ (Уравнение (2.6)) в следующем виде:

𝑌 = 𝑢1(𝑥)𝑦1 + 𝑢2(𝑥)𝑦2. (2.8)

Здесь 𝑢1(𝑥), 𝑢2(𝑥) – некоторые функции, которые нам нужно найти.

Отметим сходство формул Уравнение (2.7) и Уравнение (2.8). Мы варьируем 

произвольные постоянные 𝐶1, 𝐶2, в формуле Уравнение (2.7) и получаем вместо них 

некоторые функции 𝑢1(𝑥), 𝑢2(𝑥).

Найдем производные 𝑌 ′, 𝑌 ″ и подставим их в уравнение Уравнение (2.6).

𝑌 ′ = 𝑢′
1𝑦1 + 𝑢1𝑦′

1 + 𝑢′
2𝑦2 + 𝑢2𝑦′

2. (2.9)

Так как мы ищем частное решение уравнение, наложим на функции 𝑢1, 𝑢2 

дополнительное ограничение:

𝑢′
1𝑦1 + 𝑢′

2𝑦2 = 0. (2.10)

Тогда 𝑌 ′ примет вид:
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𝑌 ′ = 𝑢1𝑦′
1 + 𝑢2𝑦′

2. (2.11)

Соответственно,

𝑌 ″ = 𝑢′
1𝑦′

1 + 𝑢1𝑦″
1 + 𝑢′

2𝑦′
2 + 𝑢2𝑦″

2 . (2.12)

Подставим 𝑌 , 𝑌 ′, 𝑌 ″ в исходное уравнение Уравнение (2.6):

𝑢′
1𝑦′

1 + 𝑢1𝑦″
1 + 𝑢′

2𝑦′
2 + 𝑢2𝑦″

2 + 𝑎1𝑢1𝑦′
1 + 𝑎1𝑢2𝑦′

2 + 𝑎2𝑢1𝑦1 + 𝑎2𝑢2𝑦2 = 𝑓(𝑥) ⇔
⇔ 𝑢1 𝑦″

1 + 𝑎1𝑦′
1 + 𝑎2𝑦1⏟

=0(𝑦1− решение ЛОДУ)

+ 𝑢2 𝑦″
2 + 𝑎1𝑦′

2 + 𝑎2𝑦2⏟
=0(𝑦2− решение ЛОДУ)

+ 𝑢′
1𝑦′

1 + 𝑢′
2𝑦′

2 = 𝑓(𝑥) ⇔

⇔ 𝑢′
1𝑦′

1 + 𝑢′
2𝑦′

2 = 𝑓(𝑥).

(2.13)

Учитывая введенные ранее ограничения Уравнение (2.10), получаем систему уравнений 

для функций 𝑢′
1, 𝑢′

2:

{𝑢′
1𝑦1 + 𝑢′

2𝑦2 = 0
𝑢′

1𝑦′
1 + 𝑢′

2𝑦′
2 = 𝑓(𝑥). (2.14)

Определитель Вронского не равен нулю ни в одной точке в силу линейной 

независимости решений 𝑦1, 𝑦2.

Следовательно, система Уравнение (2.14) разрешима единственным образом и при 

любой правой части. Пусть её решения имеют вид:

{𝑢′
1 = 𝜑1(𝑥)

𝑢′
2 = 𝜑2(𝑥). (2.15)

Тогда функции 𝑢1(𝑥), 𝑢2(𝑥) находятся интегрированием:

{𝑢1 = ∫ 𝜑1(𝑥) 𝑑𝑥
𝑢2 = ∫ 𝜑2(𝑥) 𝑑𝑥. (2.16)

2) Рассмотрим уравнение 𝑛-го порядка:

𝑦(𝑛) + 𝑎1(𝑥)𝑦(𝑛−1) + … + 𝑎𝑛(𝑥)𝑦 = 𝑓(𝑥). (2.17)

Здесь все построения аналогичны.

Решение ЛОДУ имеет вид:

𝑦 = 𝐶1𝑦1 + 𝐶2𝑦2 + … + 𝐶𝑛𝑦𝑛. (2.18)

Частное решение ЛНДУ ищем в виде:

𝑌 = 𝑢1(𝑥)𝑦1(𝑥) + 𝑢2(𝑥)𝑦2(𝑥) + … + 𝑢𝑛(𝑥)𝑦𝑛(𝑥). (2.19)

Следуя описанной процедуре, получаем следующую систему уравнений для функций 

𝑢′
1, 𝑢′

2, …, 𝑢′
𝑛:

{


𝑢′

1𝑦1 + 𝑢′
2𝑦2 + … + 𝑢′

𝑛𝑦𝑛 = 0
𝑢′

1𝑦′
1 + 𝑢′

2𝑦′
2 + … + 𝑢′

𝑛𝑦′
𝑛 = 0

………
𝑢′

1𝑦
(𝑛−1)
1 + 𝑢′

2𝑦
(𝑛−1)
2 + … + 𝑢′

𝑛𝑦(𝑛−1)
𝑛 = 𝑓(𝑥).

(2.20)
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Определитель этой системы – это определитель Вронского:

|



 𝑦1

𝑦′
1

…
𝑦(𝑛−1)

1

𝑦2
𝑦′

2
…

𝑦(𝑛−1)
2

…
…
…
…

𝑦𝑛
𝑦′

𝑛
…

𝑦(𝑛−1)
𝑛 |






≠ 0  ни в одной точке. (2.21)

Следовательно, система Уравнение (2.20) разрешима единственным образом и при любой 

правой части. Решая её, находим 𝑢′
1, 𝑢′

2, …, 𝑢′
𝑛. Функции 𝑢1(𝑥), 𝑢2(𝑥), …, 𝑢𝑛(𝑥) находятся 

интегрированием.

Theorem 2.5 

2.5 Метод Бернулли

Напомним, что уравнением Бернулли называется уравнение вида

𝑦′ + 𝑝(𝑥)𝑦 = 𝑞(𝑥)𝑦𝑎,   где 𝑎 = conts,  𝑎 ≠ 0,  𝑎 ≠ 1. (2.22)

Его решение можно получить двумя способами.

I. Сведение к линейному уравнению.

Разделим обе части уравнения Уравнение (2.22) на 𝑦𝑎:

𝑦′

𝑦𝑎 + 𝑝(𝑥)𝑦1−𝑎 = 𝑞(𝑥). (2.23)

Сделаем замену: 𝑧 = 𝑦1−𝑎.

Соответственно,

𝑧′ = (1 − 𝑎) ⋅ 𝑦−𝑎 ⋅ 𝑦′ ⇔ 𝑦′

𝑦𝑎 = 𝑧′

1 − 𝑎
. (2.24)

Подстановим 𝑧 и 𝑧′ в исходное уравнение:

1
1 − 𝑎

𝑧′ + 𝑝(𝑥)𝑧 = 𝑞(𝑥). (2.25)

Мы получили линейное уравнение.

II. (сведение к уравнению с разделяющимися переменными)

Сделаем замену переменной как в линейном уравнении:

𝑦 = 𝑢 ⋅ 𝑒− ∫ 𝑝(𝑥)𝑑𝑥. (2.26)

Тогда

𝑦′ = 𝑢′ ⋅ 𝑒− ∫ 𝑝(𝑥)𝑑𝑥 + 𝑢 ⋅ 𝑒− ∫ 𝑝(𝑥)𝑑𝑥 ⋅ (−𝑝(𝑥)). (2.27)

Подставим 𝑦 и 𝑦′ в уравнение Уравнение (2.22):

15
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𝑢′ ⋅ 𝑒− ∫ 𝑝(𝑥)𝑑𝑥 + 𝑢 ⋅ 𝑒− ∫ 𝑝(𝑥)𝑑𝑥 ⋅ (−𝑝(𝑥)) + 𝑝(𝑥)𝑢 ⋅ 𝑒− ∫ 𝑝(𝑥)𝑑𝑥 =

= 𝑞(𝑥)𝑢𝑎 ⋅ 𝑒−𝑎 ∫ 𝑝(𝑥)𝑑𝑥 ⇔

⇔ 𝑢′ ⋅ 𝑒− ∫ 𝑝(𝑥)𝑑𝑥 = 𝑞(𝑥)𝑢𝑎 ⋅ 𝑒−𝑎 ∫ 𝑝(𝑥)𝑑𝑥 ⇔

⇔ 𝑑𝑢 = 𝑞(𝑥)𝑢𝑎 ⋅ 𝑒(1−𝑎) ∫ 𝑝(𝑥)𝑑𝑥 ⋅ 𝑑𝑥 ⇔

⇔ 𝑑𝑢
𝑢𝑎 = 𝑞(𝑥) ⋅ 𝑒(1−𝑎) ∫ 𝑝(𝑥)𝑑𝑥 ⋅ 𝑑𝑥.

(2.28)

Мы получили уравнение с разделяющимися переменными.

Theorem 2.6 

2.6 О полном дифференциале

Если 𝑀𝑑𝑥 + 𝑁𝑑𝑦 представляет собой полный дифференциал, то восстановить 

функцию 𝑢(𝑥, 𝑦) с точностью до константы по её известному полному дифференциалу

𝑑𝑢 = 𝑀(𝑥, 𝑦)𝑑𝑥 + 𝑁(𝑥, 𝑦)𝑑𝑦 (2.29)

можно с помощью криволинейного интеграла. А именно зафиксируем некоторую точку 

(𝑥0, 𝑦0). Тогда криволинейный интеграл

𝑢(𝑥, 𝑦) = ∫
𝐿
(𝑀(𝑥, 𝑦)𝑑𝑥 + 𝑁(𝑥, 𝑦)𝑑𝑦) (2.30)

по произвольной кривой от точки (𝑥0, 𝑦0) до текущей точки (𝑥, 𝑦) даст значение 

функции 𝑢(𝑥, 𝑦), дифференциал которой имеет вид Уравнение (2.29). Изменение 

начальной точки (𝑥0, 𝑦0) приводит к добавлению постоянной (функция 𝑢(𝑥, 𝑦) находится 

с точностью до константы).

Формула Уравнение (2.30) принимает более удобный вид, если кривую 𝐿 выбрать в 

виде ломаной, показанной на Рис. 2.1.
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Рис. 2.1. Кривая интегрирования 𝐿.

При таком выборе 𝐿 имеем:

𝑢(𝑥, 𝑦) = ∫
𝑥

𝑥0

𝑀(𝑥, 𝑦0)𝑑𝑥 + ∫
𝑦

𝑦0

𝑁(𝑥, 𝑦)𝑑𝑦. (2.31)

Соответственно, решение уравнения:

𝑢(𝑥, 𝑦) = 𝐶. (2.32)

Theorem 2.7 

2.7 Об интегрирующем множителе

Напомним вид интегрирующего множителя:

𝑑𝑢 = 𝜇𝑀𝑑𝑥 + 𝜇𝑁𝑑𝑦. (2.33)

Напишем условие того, что 𝑑𝑢 является полным дифференциалом:

17
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𝜕
𝜕𝑦

(𝜇𝑀) = 𝜕
𝜕𝑥

(𝜇𝑁) ⇔

⇔ 𝜕𝜇
𝜕𝑦

⋅ 𝑀 + 𝜇 ⋅ 𝜕𝑀
𝜕𝑦

= 𝜕𝜇
𝜕𝑥

⋅ 𝑁 + 𝜇 ⋅ 𝜕𝑁
𝜕𝑥

⇔

⇔ 𝑁 𝜕𝜇
𝜕𝑥

− 𝑀 𝜕𝜇
𝜕𝑦

= (𝜕𝑀
𝜕𝑦

− 𝜕𝑁
𝜕𝑥

)𝜇 ⇔

⇔ 𝑁 ⋅ 1
𝜇

⋅ 𝜕𝜇
𝜕𝑦⏟

− 𝑀 ⋅ 1
𝜇

⋅ 𝜕𝜇
𝜕𝑦⏟

𝜕 ln 𝜇
𝜕𝑦

= 𝜕𝑀
𝜕𝑦

− 𝜕𝑁
𝜕𝑥

⇔

⇔ 𝑁 ⋅ 𝜕 ln 𝜇
𝜕𝑥

− 𝑀 ⋅ 𝜕 ln 𝜇
𝜕𝑦

= 𝜕𝑀
𝜕𝑦

− 𝜕𝑁
𝜕𝑥

.

(2.34)

Таким образом, для нахождения инегрирующего множителя мы получим уравнение в 

частных производных. Иногда удается найти его решение. Если 𝜇 = 𝜇(𝑥), то 
𝜕𝜇
𝜕𝑦 = 0 и 

уравнение Уравнение (2.34) примет вид:

𝑑 ln 𝜇
𝑑𝑥

=
𝜕𝑀
𝜕𝑦 − 𝜕𝑁

𝜕𝑥

𝑁
. (2.35)

Если правая часть уравнения не зависит от 𝑦, то ln 𝜇 находится интегрированием.

Theorem 2.8 

2.8 О существовании решения ДУ высших порядков

Theorem 2.9 

2.9 Замены для уравнений, допускающих понижение порядка

Theorem 2.10 

2.10 Свойства решений линейного однородного ДУ

Theorem 2.11 

2.11 Необходимое условие линейной зависимости решений
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Theorem 2.12 

2.12 Достаточное условие линейной зависимости решений

Theorem 2.13 

2.13 О базисе пространства решений

Theorem 2.14 

2.14 Общее решение линейного неоднородного ДУ

Theorem 2.15 

2.15 Принцип суперпозиции

Докажите, что если 𝜑1 – решение системы ̇𝑟 = 𝑃(𝑡)𝑟 + 𝑞1(𝑡), 𝜑2 – решение системы 

̇𝑟 = 𝑃(𝑡)𝑟 + 𝑞2(𝑡), то 𝜑1 + 𝜑2 – решение системы ̇𝑟 = 𝑃(𝑡)𝑟 + 𝑞1(𝑡) + 𝑞2(𝑡).

Theorem 2.16 

2.16 Метод вариации произвольных постоянных

Theorem 2.17 

2.17 О ФСР для различных вещественных корней 

характеристического многочлена

Theorem 2.18 
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2.18 О ФСР для кратных вещественных корней 

характеристического многочлена

Theorem 2.19 

2.19 Линейное однородное ДУ второго порядка с постоянными 

коэффициентами

Theorem 2.20 

2.20 Метод неопределенных коэффициентов

Theorem 2.21 

2.21 Метод исключения для решения системы ДУ

Theorem 2.22 

2.22 Метод Эйлера для решения однородных линейных систем ДУ 

при простых собственных числах

Theorem 2.23 

2.23 Метод Эйлера для решения однородных линейных систем ДУ 

при кратных собственных числах

Theorem 2.24 

2.24 Общее решение линейной неоднородной системы ДУ

20



Дифференциальные уравнения 2 Теоремы

Theorem 2.25 

2.25 Свойства преобразования Лапласа

Theorem 2.26 

2.26 О дифференцировании изображения

Theorem 2.27 

2.27 О дифференцировании оригинала

Theorem 2.28 

2.28 Об интегрировании оригинала

Theorem 2.29 

2.29 Преобразования Лапласа простейших функций
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