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Цель

Решение неоднородного линейного дифференциального уравнения 
разными способами.

Методы будут демонстрироваться на задаче Коши:

𝑦″ − 4𝑦′ + 5𝑦 = 4𝑒−2𝑥,  𝑦(0) = 0,  𝑦′(0) = 1
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Метод специальной правой части

(Дощенников Никита)

Запишем характеристическое уравнение:

𝑟2 − 4𝑟 + 5 = 0

Найдем его корни. Посчитаем дискриминант:

𝒟︀ = 𝑏2 − 4𝑎𝑐 = 16 − 4 ⋅ 5 = −4 < 0

Тогда корни:

𝑟1 = 4 +
√

−4
2

= 2 + 𝑖,  𝑟2 = 4 −
√

−4
2

= 2 − 𝑖

Запишем общее решение для однородного уравнения. Так как корни 
комплексные, то общее решение соответствует форме:

𝑦общ = 𝑒𝛼𝑥 ⋅ (𝐶1 ⋅ cos 𝛽𝑥 + 𝐶2 ⋅ sin 𝛽𝑥)

В нашем случае 𝛼 = 2, 𝛽 = 1. Тогда:

𝑦общ = 𝑒2𝑥 ⋅ (𝐶1 ⋅ cos 𝑥 + 𝐶2 ⋅ sin 𝑥)

Специальный вид правой части соответствует виду:

𝑓(𝑥) = 𝑃𝑛(𝑥) ⋅ 𝑒𝛼𝑥

где 𝑃0(𝑥) = 4 (𝑛 = 0), 𝛼 = −2.

Так как 𝛼 = −2 не является корнем характеристического уравнения, 
частное решение представим в следующем виде:

𝑦частн = 𝑒𝛼𝑥 ⋅ 𝑄0(𝑥) = 𝑒−2𝑥 ⋅ 𝐴

Найдем первую и вторую производные для частного решения:

𝑦′
частн = (𝐴𝑒−2𝑥)′ = −2𝐴𝑒−2𝑥

𝑦″
частн = (−2𝐴𝑒−2𝑥)′ = 4𝐴𝑒−2𝑥

Подставим в исходное уравнение:

4𝐴𝑒−2𝑥 + 8𝐴𝑒−2𝑥 + 5𝐴𝑒−2𝑥 = 4𝑒−2𝑥

Вынеся 𝑒−2𝑥 за скобки получим:
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𝑒−2𝑥(4𝐴 + 8𝐴 + 5𝐴) = 𝑒−2𝑥(4)

Отсюда видно, что

4𝐴 + 8𝐴 + 5𝐴 = 4 ⇒ 17𝐴 = 4 ⇒ 𝐴 = 4
17

Тогда

𝑦частн = 𝐴𝑒−2𝑥 = 4
17

𝑒−2𝑥

Запишем общее решение:

𝑦 = 𝑦общ + 𝑦частн = 𝑒2𝑥 ⋅ (𝐶1 ⋅ cos 𝑥 + 𝐶2 ⋅ sin 𝑥) + 4
17

𝑒−2𝑥

Теперь решим задачу Коши. Чтобы определить коэффициенты, 
подставим 0 вместо 𝑥:

𝑦 = 𝐶1 + 4
17

по условию 𝑦(0) = 0, то есть

𝐶1 + 4
17

= 0 ⇒ 𝐶1 = − 4
17

.

Найдем производную 𝑦′:

𝑦′ = 𝐶1(𝑒2𝑥 cos 𝑥)′ + 𝐶2(𝑒2𝑥 sin 𝑥)′ + 4
17

(𝑒−2𝑥)′ =

= 𝐶1(2𝑒2𝑥 cos 𝑥 − 𝑒2𝑥 sin 𝑥) + 𝐶2(2𝑒2𝑥 sin 𝑥 + 𝑒2𝑥 cos 𝑥) − 8
17

𝑒−2𝑥 =

= 𝑒2𝑥((2𝐶1 + 𝐶2) cos 𝑥 + (2𝐶2 − 𝐶1) sin 𝑥) − 8
17

𝑒−2𝑥

По условию 𝑦′(0) = 1. Подставим 0 вместо 𝑥 и получим:

𝑦′(0) = 2𝐶1 + 𝐶2 − 8
17

= 1

Подставим 𝐶1 = − 4
17 :

− 8
17

+ 𝐶2 − 8
17

= 1 ⇒ 𝐶2 = 33
17
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Подставим найденные коэффициенты в итоговое решение:

𝑦 = 𝑒2𝑥(− 4
17

cos 𝑥 + 33
17

sin 𝑥) + 4
17

𝑒−2𝑥.
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Метод вариации постоянной

(Дощенников Никита)

Напомним вид общего решения для однородного уравнения:

𝑦общ = 𝑒2𝑥 ⋅ (𝐶1 ⋅ cos 𝑥 + 𝐶2 ⋅ sin 𝑥)

Раскроем скобки и получим

𝑦общ = 𝐶1𝑒2𝑥 cos 𝑥 + 𝐶2𝑒2𝑥 sin 𝑥

Сведем все к системе:

{𝐶′
1(𝑥)𝑦1 + 𝐶′

2(𝑥)𝑦2 = 0
𝐶′

1(𝑥)𝑦′
1 + 𝐶′

2(𝑥)𝑦′
2 = 𝑓(𝑥)

где 𝑦1 = 𝑒2𝑥 cos 𝑥,  𝑦2 = 𝑒2𝑥 sin 𝑥,  𝑓(𝑥) = 4𝑒−2𝑥.

Найдем производные для 𝑦1 и 𝑦2:

𝑦1′ = (𝑒2𝑥 cos 𝑥)′ = 2𝑒2𝑥 cos 𝑥 − 𝑒2𝑥 sin 𝑥

𝑦2′ = (𝑒2𝑥 sin 𝑥)′ = 2𝑒2𝑥 sin 𝑥 + 𝑒2𝑥 cos 𝑥

Тогда система примет следующий вид:

{𝐶′
1(𝑥)(𝑒2𝑥 cos 𝑥) + 𝐶′

2(𝑥)(𝑒2𝑥 sin 𝑥) = 0
𝐶′

1(𝑥)(2𝑒2𝑥 cos 𝑥 − 𝑒2𝑥 sin 𝑥) + 𝐶′
2(𝑥)(2𝑒2𝑥 sin 𝑥 + 𝑒2𝑥 cos 𝑥) = 4𝑒−2𝑥

Из первого уравнения системы:

𝐶′
1 = −𝐶′

2
𝑒2𝑥 sin 𝑥
𝑒2𝑥 cos 𝑥

= −𝐶′
2 tg 𝑥

Подставим во второе уравнение системы и вынесем 𝐶′
2𝑒2𝑥:

𝐶′
2𝑒2𝑥(− tg 𝑥(2 cos 𝑥 − sin 𝑥) + 2 sin 𝑥 + cos 𝑥) = 4𝑒−2𝑥

Упростим

− tg 𝑥(2 cos 𝑥 − sin 𝑥) = −sin 𝑥
cos 𝑥

(2 cos 𝑥 − sin 𝑥) = −2 sin 𝑥 + sin2 𝑥
cos 𝑥

Тогда

6



(−2 sin 𝑥 + sin2 𝑥
cos 𝑥

) + 2 sin 𝑥 + cos 𝑥 = sin2 𝑥 + cos2 𝑥
cos 𝑥

= 1
cos 𝑥

Вернемся в уравнение 2 системы. С учетом упрощения оно примет 
следующий вид:

𝐶′
2𝑒2𝑥 ⋅ 1

cos 𝑥
= 4𝑒−2𝑥

Отсюда

𝐶2′ = 4𝑒−4𝑥 cos 𝑥

Найдем 𝐶′
1

𝐶′
1 = −𝐶′

2 tg 𝑥 = −4𝑒−4𝑥 cos 𝑥 sin 𝑥
cos 𝑥

= −4𝑒−4𝑥 sin 𝑥

Проинтегрируем и получим

𝐶1 = −4 ∫ 𝑒−4𝑥 sin 𝑥𝑑𝑥 = 4
17

𝑒−4𝑥(4 sin 𝑥 + cos 𝑥)

𝐶2 = 4 ∫ 𝑒−4𝑥 cos 𝑥𝑑𝑥 = 4
17

𝑒−4𝑥(4 cos 𝑥 − sin 𝑥)

Подставим в формулу частного решения:

𝑦частн = 𝐶1(𝑥)𝑦1 + 𝐶2(𝑥)𝑦2 =

= 4
17

𝑒−4𝑥(4 sin 𝑥 + cos 𝑥) ⋅ 𝑒2𝑥 cos 𝑥 + 4
17

𝑒−4𝑥(4 cos 𝑥 − sin 𝑥) ⋅ 𝑒2𝑥 sin 𝑥 =

= 4
17

𝑒−2𝑥((4 sin 𝑥 + cos 𝑥) cos 𝑥 + (4 cos 𝑥 − sin 𝑥) sin 𝑥) =

= 4
17

𝑒−2𝑥(4 sin 𝑥 cos 𝑥 + 4 cos 𝑥 sin 𝑥 + cos2 𝑥 − sin2 𝑥) =

= 4
17

𝑒−2𝑥(8 sin 𝑥 cos 𝑥 + (cos2 𝑥 + sin2 𝑥)) =

= 4
17

𝑒−2𝑥(8 sin 𝑥 cos 𝑥 + 1) =

= 4
17

𝑒−2𝑥(cos 2𝑥 + 4 sin 2𝑥)
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Так как 𝑒−2𝑥 cos 2𝑥 и 𝑒−2𝑥 sin 2𝑥 – решения однородного уравнения, 
то выражение 4

17𝑒−2𝑥(cos 2𝑥 + 4 sin 2𝑥) – это частное решение и часть 
однородного решения. Тогда окончательно получим

𝑦частн = 4
17

𝑒−2𝑥

Запишем общее решение:

𝑦 = 𝑦общ + 𝑦частн = 𝑒2𝑥(− 4
17

cos 𝑥 + 33
17

sin 𝑥) + 4
17

𝑒−2𝑥.

Дальнейшее решение задачи Коши идентично описанному в первом 
методе.
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Операционный метод

(Левахин Лев)

Применим преобразование Лапласа к исходному уравнению:

𝐿[𝑦″] − 4𝐿[𝑦′] + 5𝐿[𝑦] = 4𝐿[𝑒−2𝑥]

Используем свойства преобразования Лапласа:

(𝑝2𝑌 (𝑝) − 𝑝𝑦(0) − 𝑦′(0)) − 4(𝑝𝑌 (𝑝) − 𝑦(0)) + 5𝑌 (𝑝) = 4
𝑝 + 2

Подставим начальные условия 𝑦(0) = 0, 𝑦′(0) = 1:

(𝑝2𝑌 (𝑝) − 1) − 4𝑝𝑌 (𝑝) + 5𝑌 (𝑝) = 4
𝑝 + 2

Сгруппируем члены с 𝑌 (𝑝):

(𝑝2 − 4𝑝 + 5)𝑌 (𝑝) − 1 = 4
𝑝 + 2

(𝑝2 − 4𝑝 + 5)𝑌 (𝑝) = 1 + 4
𝑝 + 2

= 𝑝 + 6
𝑝 + 2

Выразим 𝑌 (𝑝):

𝑌 (𝑝) = 𝑝 + 6
(𝑝 + 2)(𝑝2 − 4𝑝 + 5)

Разложим на простейшие дроби. Для этого сначала представим:

𝑌 (𝑝) = 𝐴
𝑝 + 2

+ 𝐵 ∗ 𝑝 + 𝐶
𝑝2 − 4𝑝 + 5

Умножим обе части на (𝑝 + 2)(𝑝2 − 4𝑝 + 5):

𝑝 + 6 = 𝐴(𝑝2 − 4𝑝 + 5) + (𝐵 ∗ 𝑝 + 𝐶)(𝑝 + 2)

𝑝 + 6 = 𝐴𝑝2 − 4𝐴𝑝 + 5𝐴 + 𝐵𝑝2 + 2𝐵𝑝 + 𝐶𝑝 + 2𝐶

𝑝 + 6 = (𝐴 + 𝐵)𝑝2 + (−4𝐴 + 2𝐵 + 𝐶)𝑝 + (5𝐴 + 2𝐶)

Получим систему уравнений:
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{

𝐴 + 𝐵 = 0

−4𝐴 + 2𝐵 + 𝐶 = 1
5𝐴 + 2𝐶 = 6

A + B = 0, при p^2 −4A + 2B + C = 1, при p^1 5A + 2C = 6, при p^0

Из первого уравнения: 𝐵 = −𝐴. Подставим в остальные:

{−4𝐴 − 2𝐴 + 𝐶 = 1
5𝐴 + 2𝐶 = 6

{−6𝐴+𝐶=1
5𝐴+2𝐶=6

Решим систему: из первого 𝐶 = 1 + 6𝐴, подставим во второе:

5𝐴 + 2(1 + 6𝐴) = 6

5𝐴 + 2 + 12𝐴 = 6

17𝐴 = 4

𝐴 = 4
17

Тогда:

𝐵 = − 4
17

𝐶 = 1 + 6 ∗ ( 4
17

) = 1 + 24
17

= 41
17

Итак:

𝑌 (𝑝) =
4
17

𝑝 + 2
+

(− 4
17)𝑝 + 41

17
𝑝2 − 4𝑝 + 5

Преобразуем второе слагаемое. Заметим, что 𝑝2 − 4𝑝 + 5 = (𝑝 − 2)2 + 1:

𝑌 (𝑝) =
4
17

𝑝 + 2
+

− 4
17 ∗ 𝑝 + 41

17
(𝑝 − 2)2 + 1

Выделим в числителе второй дроби слагаемое 𝑝 − 2:

− 4
17

∗ 𝑝 + 41
17

= − 4
17

∗ (𝑝 − 2) − 8
17

+ 41
17

= − 4
17

∗ (𝑝 − 2) + 33
17
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Тогда:

𝑌 (𝑝) =
4
17

𝑝 + 2
+

− 4
17 ∗ (𝑝 − 2) + 33

17
(𝑝 − 2)2 + 1

𝑌 (𝑝) =
4
17

𝑝 + 2
− ( 4

17
) ∗ 𝑝 − 2

(𝑝 − 2)2 + 1
+

33
17

(𝑝 − 2)2 + 1

Применим обратное преобразование Лапласа, используя свойства:

𝐿−1[ 1
𝑝 + 2

] = 𝑒−2𝑡

𝐿−1[ 𝑝 − 2
(𝑝 − 2)2 + 1

] = 𝑒2𝑡 cos 𝑡

𝐿−1[ 1
(𝑝 − 2)2 + 1

] = 𝑒2𝑡 sin 𝑡

Получаем решение:

𝑦(𝑥) = ( 4
17

)𝑒−2𝑥 − ( 4
17

)𝑒2𝑥 cos 𝑥 + (33
17

)𝑒2𝑥 sin 𝑥

Или в более компактной форме:

𝑦(𝑥) = 𝑒2𝑥(− 4
17

cos 𝑥 + 33
17

sin 𝑥) + 4
17

𝑒−2𝑥

Полученное решение полностью совпадает с результатами предыдущих 
методов.

11



Метод разложения в ряд

(Останин Андрей)

Ищем решение в виде степенного ряда:

𝑦(𝑥) = ∑
∞

𝑛=0
𝑎𝑛𝑥𝑛

Тогда производные имеют вид:

𝑦′(𝑥) = ∑
∞

𝑛=1
𝑛𝑎𝑛𝑥𝑛−1, 𝑦″(𝑥) = ∑

∞

𝑛=2
𝑛(𝑛 − 1)𝑎𝑛𝑥𝑛−2

Правая часть уравнения раскладывается в ряд Тейлора:

4𝑒−2𝑥 = ∑
∞

𝑛=0
𝑏𝑛𝑥𝑛, 𝑏𝑛 = 4(−2)𝑛

𝑛!

Приведём ряды для производных к одинаковым степеням 𝑥𝑛:

𝑦″ = ∑
∞

𝑛=0
(𝑛 + 2)(𝑛 + 1)𝑎𝑛+2𝑥𝑛

𝑦′ = ∑
∞

𝑛=0
(𝑛 + 1)𝑎𝑛+1𝑥𝑛

Подставляя полученные выражения в исходное дифференциальное 
уравнение, получаем:

∑
∞

𝑛=0
[(𝑛 + 2)(𝑛 + 1)𝑎𝑛+2 − 4(𝑛 + 1)𝑎𝑛+1 + 5𝑎𝑛]𝑥𝑛 = ∑

∞

𝑛=0
𝑏𝑛𝑥𝑛

Отсюда следует рекуррентное соотношение для коэффициентов:

(𝑛 + 2)(𝑛 + 1)𝑎𝑛+2 − 4(𝑛 + 1)𝑎𝑛+1 + 5𝑎𝑛 = 𝑏𝑛

Начальные условия задачи Коши дают:

𝑎0 = 𝑦(0) = 0, 𝑎1 = 𝑦′(0) = 1

Найдём первые коэффициенты ряда.

При 𝑛 = 0:

2𝑎2 − 4𝑎1 + 5𝑎0 = 4
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2𝑎2 − 4 = 4 ⇒ 𝑎2 = 4

При 𝑛 = 1:

6𝑎3 − 8𝑎2 + 5𝑎1 = −8

6𝑎3 − 32 + 5 = −8 ⇒ 𝑎3 = 19
6

При 𝑛 = 2:

12𝑎4 − 12𝑎3 + 5𝑎2 = 8

12𝑎4 − 38 + 20 = 8 ⇒ 𝑎4 = 13
6

При 𝑛 = 3:

20𝑎5 − 16𝑎4 + 5𝑎3 = −16
3

20𝑎5 − 208
6

+ 95
6

= −16
3

⇒ 𝑎5 = 27
40

Таким образом, решение в виде степенного ряда имеет вид:

𝑦(𝑥) = 𝑥 + 4𝑥2 + 19
6

𝑥3 + 13
6

𝑥4 + 27
40

𝑥5 + …

Полученное разложение совпадает с рядом Тейлора точного решения, 
найденного ранее другими методами.
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