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I Определения

Definition 1.1 

1.1 Дифференциальное уравнение

Обыкновенным дифференциальным уравнением первого порядка называют 

уравнение вида

𝐹(𝑥, 𝑦, 𝑦′) = 0. (1.1)

ИЛИ
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Дифференциальным уравнением называется уравнение, связывающее независимую 

переменную 𝑥, искомую функцию 𝑦 = 𝑦(𝑥) и её производные 𝑦′, 𝑦′′, …, 𝑦(𝑛).

Definition 1.2 

1.2 Решение дифференциального уравнения, общее решение

Функция 𝜑 - решение уравнения, если

𝜑 ∈ 𝐶1(𝑎, 𝑏);
𝐹 (𝑥, 𝜑(𝑥), 𝜑′(𝑥)) ≡ 0  на (𝑎, 𝑏)

(1.2)

Другими словами, решением уравнения называют гладкую функцию 𝜑, определённую 

на интервале (𝑎, 𝑏), подстановка которой вместо 𝑦 обращает уравнение в тождество на 

(𝑎, 𝑏).

Общим решением уравнения называют множество всех его решений.

ИЛИ

Функция 𝑦 = 𝜑(𝑥) является решением дифференциального уравнения, если её 

подстановка в уравнение обращает его в тождество.

Definition 1.3 

1.3 Задача Коши

Задачей Коши или начальной задачей для нормального уравнения

𝑦′ = 𝑓(𝑥, 𝑦) (1.3)

называют задачу нахождения его решения, удовлетворяющего начальному условию

𝑦(𝑥0) = 𝑦0. (1.4)

Пара чисел (𝑥0, 𝑦0) при этом называется начальными данными.

Definition 1.4 

1.4 Уравнение с разделяющимися переменными

Уравнение в дифференциалах вида

𝑃(𝑥)𝑑𝑥 + 𝑄(𝑦)𝑑𝑦 = 0 (1.5)

называют уравнением с разделёнными переменными.
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Такое название мотивировано тем, что каждое его слагаемое зависит только от 

одной переменной.

Уравнение вида

𝑝1(𝑥)𝑞1(𝑦)𝑑𝑥 + 𝑝2(𝑥)𝑞2(𝑦)𝑑𝑦 = 0 (1.6)

называют уравнением с разделяющимися переменными.

ИЛИ

Если уравнение Φ(𝑥, 𝑦, 𝑦′) = 0 с помощью алгебраических преобразований удается 

привести к виду

𝑦′ = 𝑔(𝑥) ⋅ ℎ(𝑦) (1.7)

или

𝑀1(𝑥)𝑀2(𝑦)𝑑𝑥 + 𝑁1(𝑥)𝑁2(𝑦)𝑑𝑦 = 0, (1.8)

то оно называется уравнением с разделяющимися переменными.

Definition 1.5 

1.5 Однородная функция

Функция 𝐹(𝑥, 𝑦) называется однородной функцией степени 𝛼, если при всех 

допустимых 𝑡, 𝑥 и 𝑦 верно равенство

𝐹(𝑡𝑥, 𝑡𝑦) = 𝑡𝛼𝐹(𝑥, 𝑦). (1.9)

Пример однородных функций: 𝑥 + 𝑦 + 𝑧 (первой степени), 𝑥2 + 3𝑥𝑦 + 𝑦2 (второй 

степени), 𝑦
𝑥 cos 𝑥

𝑦  (нулевой степени), 
√

𝑥+𝑦
𝑥2+𝑦2  (степени −3

2 ).

Definition 1.6 

1.6 Однородное ДУ первого порядка

Пусть 𝑃  и 𝑄 - однородные функции одинаковой степени. Тогда уравнение вида

𝑃(𝑥, 𝑦)𝑑𝑥 + 𝑄(𝑥, 𝑦)𝑑𝑦 = 0 (1.10)

называется однородным уравнением.

ИЛИ

Дифференциальное уравнение первого порядка называется однородным, если его 

можно привести к виду:

𝑦′ = 𝑓(𝑦
𝑥

) (1.11)
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Definition 1.7 

1.7 Линейное ДУ первого порядка

Дифференциальное уравнение вида

𝑦′ = 𝑝(𝑥)𝑦 + 𝑞(𝑥), (1.12)

называется линейным уравнением первого порядка.

Название линейное мотивировано тем, что оно составлено из многочленов первой 

степени по отношению к символам 𝑦 и 𝑦′.

ИЛИ

Линейным уравнением первого порядка называется уравнение вида

𝑦′ + 𝑝(𝑥)𝑦 = 𝑞(𝑥), (1.13)

где 𝑝(𝑥), 𝑞(𝑥) – заданные функции.

Definition 1.8 

1.8 Уравнение Бернулли

Уравнением Бернулли называют уравнение вида

𝑦′ = 𝑝(𝑥)𝑦 + 𝑞(𝑥)𝑦𝛼, (1.14)

где 𝛼 ∈ ℝ ∖ {0, 1}.

Разделив данное уравнение на 𝑦𝛼, находим

𝑦′

𝑦𝛼 = 𝑝(𝑥)𝑦1−𝛼 + 𝑞(𝑥). (1.15)

Отсюда видно, что замена 𝑧 = 𝑦1−𝛼 сводит уравнение к линейному.

ИЛИ

Уравнением Бернулли называется уравнение вида

𝑦′ + 𝑝(𝑥)𝑦 = 𝑞(𝑥)𝑦𝑎,   где 𝑎 = const, 𝑎 ≠ 0, 𝑎 ≠ 1 (1.16)

Definition 1.9 

1.9 Уравнение в полных дифференциалах

Уравнение
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𝑃(𝑥, 𝑦)𝑑𝑥 + 𝑄(𝑥, 𝑦)𝑑𝑦 = 0 (1.17)

называют уравнением в полных дифференциалах, если существует такая функция 𝑢, что

𝑑𝑢 = 𝑃(𝑥, 𝑦)𝑑𝑥 + 𝑄(𝑥, 𝑦)𝑑𝑦, (1.18)

то есть 𝑢′
𝑥 = 𝑃, 𝑢′

𝑦 = 𝑄.

ИЛИ

Дифференциальное уравнение вида

𝑀(𝑥, 𝑦)𝑑𝑥 + 𝑁(𝑥, 𝑦)𝑑𝑥 = 0 (1.19)

называется уравнением в полных дифференциалах, если его левая часть представляет 

собой полный дифференциал некоторой функции 𝑢(𝑥, 𝑦):

𝑀𝑑𝑥 + 𝑁𝑑𝑦 = 𝑑𝑢 = 𝜕𝑢
𝜕𝑥

𝑑𝑥 + 𝜕𝑢
𝜕𝑦

𝑑𝑦. (1.20)

Условие того, что 𝑀𝑑𝑥 + 𝑁𝑑𝑦 представляет собой полный дифференциал:

𝜕𝑀
𝜕𝑦

= 𝜕𝑁
𝜕𝑥

. (1.21)

Definition 1.10 

1.10 Особое решение ДУ

Решение 𝑦 = 𝜑(𝑥) дифференциального уравнения

Φ(𝑥, 𝑦, 𝑦′) = 0 (1.22)

называется особым, если в каждой его точке нарушается свойство единственности, то 

есть если через каждую его точку (𝑥0, 𝑦0) кроме этого решения проходит и другое 

решение, имеющее в точке (𝑥0, 𝑦0) ту же касательную, что и решение 𝑦 = 𝜑(𝑥), но не 

совпадающее с ним в сколь угодно малой окрестности (𝑥0, 𝑦0). График особого решения 

будем называть особой интегральной кривой уравнения.

ИЛИ

Решение 𝜑 на (𝑎, 𝑏) уравнения 𝑦′ = 𝑓(𝑥, 𝑦) называется особым, если для любой точки 

𝑥0 ∈ (𝑎, 𝑏) найдется решение 𝜓 того же уравнения, такое что

𝜑(𝑥0) = 𝜓(𝑥0) (1.23)

при этом 𝜑 ≡ 𝜓 в любой сколь угодно малой окрестности точки 𝑥0.

Более кратко это выражают словами: интегральная кривая уравнения 𝑦′ = 𝑓(𝑥, 𝑦) 
является особой, если в каждой её точке нарушается единственность решения задачи 

Коши.
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Definition 1.11 

1.11 ДУ высшего порядка, задача Коши для него

Дифференциальным уравнением 𝑛-го порядка называют уравнение вида

𝐹(𝑥, 𝑦, 𝑦′, …, 𝑦(𝑛)) = 0. (1.24)

Функция 𝜑 – решение уравнения на (𝑎, 𝑏), если

𝜑 ∈ 𝐶𝑛(𝑎, 𝑏);

𝐹(𝑥, 𝜑(𝑥), 𝜑′(𝑥), …, 𝜑(𝑛)(𝑥)) ≡ 0  на (𝑎, 𝑏).
(1.25)

Каноническим уравнением будем называть уравнение

𝑦(𝑛) = 𝑓(𝑥, 𝑦, 𝑦′, …, 𝑦(𝑛−1)), (1.26)

разрешённое относительно старшей производной.

Задачей Коши для канонического уравнения называют задачу нахождения его 

решения, удовлетворяющего начальным условиям

𝑦(𝑥0) = 𝑦0, 𝑦′(𝑥0) = 𝑦′
0, …, 𝑦(𝑛−1)(𝑥0) = 𝑦(𝑛−1)

0 . (1.27)

Набор чисел (𝑥0, 𝑦0, 𝑦′
0, …, 𝑦(𝑛−1)

0 ) при этом называют начальными данными.

ИЛИ

Обыкновенное дифференциальное уравнение 𝑛-го порядка имеет вид

Φ(𝑥, 𝑦, 𝑦′, 𝑦″, …, 𝑦(𝑛)) = 0, (1.28)

или в решенном относительно старшей производной 𝑦(𝑛), вид

𝑦(𝑛) = 𝑓(𝑥, 𝑦, 𝑦′, 𝑦″, …, 𝑦(𝑛−1)). (1.29)

Всякая функция 𝑦(𝑥), имеющая непрерывные производные вплоть до 𝑛-го порядка и 

удовлетворяющая уравнению, называется решением этого уравнения, а сама задача 

нахождения решений дифференциального уравнения называется задачей 

интегрирования дифференциального уравнения.

Definition 1.12 

1.12 Линейное ДУ 𝑛-го порядка. Однородное, неоднородное

Линейным дифференциальным уравнением порядка 𝑛 называется уравнение вида

𝑦(𝑛) + 𝑝𝑛−1(𝑡)𝑦(𝑛−1) + … + 𝑝1(𝑡) ̇𝑦 + 𝑝0(𝑡)𝑦 = 𝑞(𝑡), (1.30)

где 𝑝0, 𝑝1, …, 𝑝𝑛−1, 𝑞 ∈ 𝐶(𝑎, 𝑏).
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Если 𝑞 ≡ 0 на (𝑎, 𝑏), то уравнение, то есть

𝑦(𝑛) + 𝑝𝑛−1(𝑡)𝑦(𝑛−1) + … + 𝑝1(𝑡) ̇𝑦 + 𝑝0(𝑡)𝑦 = 0, (1.31)

называется однородным, в противном случае – неоднородным.

ИЛИ

Уравнение вида

𝑦(𝑛) + 𝑎1(𝑥)𝑦(𝑛−1) + … + 𝑎𝑛−1(𝑥)𝑦′ + 𝑎𝑛(𝑥)𝑦 = 0 (1.32)

называется линейным однородным дифференциальным уравнением 𝑛-го порядка.

Уравнение вида

𝑦(𝑛) + 𝑎1(𝑥)𝑦(𝑛−1) + … + 𝑎𝑛−1(𝑥)𝑦′ + 𝑎𝑛(𝑥)𝑦 = 𝑓(𝑥) (1.33)

называется линейным неоднородным дифференциальным уравнением 𝑛-го порядка.

Definition 1.13 

1.13 Линейная независимость функций

Definition 1.14 

1.14 Определитель Вронского

Определителем Вронского (или вронскианом) функций 𝑦1, 𝑦2, …, 𝑦𝑛 ∈ 𝐶(𝑛−1)(𝑎, 𝑏) 
называют

𝑊(𝑡) ≔

|



 𝑦1(𝑡)

̇𝑦1(𝑡)
…

𝑦(𝑛−1)(𝑡)

𝑦2(𝑡)
̇𝑦2(𝑡)
…

𝑦(𝑛−1)
2

…
…
…
…

𝑦𝑛(𝑡)
̇𝑦𝑛(𝑡)
…

𝑦(𝑛−1)
𝑛 (𝑡)|






(1.34)

Definition 1.15 

1.15 Фундаментальная система решений

Фундаментальной системой решений системы уравнений называется совокупность 

её 𝑛 линейно независимых решений.

ИЛИ
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Дифференциальные уравнения 1 Определения

Любой набор из 𝑛 линейно независимых решений 𝑦1(𝑥), 𝑦2(𝑥), …, 𝑦𝑛(𝑥) уравнения 

𝑦(𝑛) + 𝑎1(𝑥)𝑦(𝑛−1) + … + 𝑎𝑛−1(𝑥)𝑦′ + 𝑎𝑛(𝑥)𝑦 = 0 называется фундаментальной системой 

решений этого уравнения.

Definition 1.16 

1.16 Характеристический многочлен

Многочлен

𝑝(𝜆) ≔ 𝜆𝑛 + 𝑎𝑛−1𝜆𝑛−1 + … + 𝑎1𝜆 + 𝑎0 (1.35)

называется характеристическим многочленом уравнения 𝑦(𝑛) + 𝑎𝑛−1𝑦(𝑛−1) + … + 𝑎1 ̇𝑦 +
𝑎0𝑦 = 𝑓(𝑡), а его корни – характеристическими числами того же уравнения.

Definition 1.17 

1.17 Система ДУ, решение системы

Система дифференциальных уравнений – это набор дифференциальных уравнений, 

решаемых совместно. Решение системы – это набор функций, который удовлетворяет 

всем уравнениям системы. Такая форма записи системы называется нормальной формой 

Коши:

{


𝑑𝑦1

𝑑𝑥 = 𝑓1(𝑥, 𝑦1, 𝑦2, …, 𝑦𝑛)
…
𝑑𝑦𝑛
𝑑𝑥 = 𝑓𝑛(𝑥, 𝑦1, 𝑦2, …, 𝑦𝑛)

(1.36)

Решением системы называется совокупность 𝑛 функций

𝑦𝑖 = 𝜓𝑖(𝑥),  𝑖 = 1, 2, …, 𝑛 (1.37)

таких, что при подстановке их в уравнения системы эти уравнения обращаются в 

тождества относительно 𝑥. При этом функции 𝜓𝑖(𝑥) предполагаются непрерывно 

дифференцируемыми.

ИЛИ

Нормальной системой дифференциальных уравнений порядка 𝑛 называется система 

уравнений вида

{

 ̇𝑥1 = 𝑓1(𝑡, 𝑥1, …, 𝑥𝑛)

…
̇𝑥𝑛 = 𝑓𝑛(𝑡, 𝑥1, …, 𝑥𝑛)

. (1.38)

Если ввести в рассмотрение векторы
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𝑟 =
(

𝑥1

…
𝑥𝑛)


,  𝑓(𝑡, 𝑟) =

(

𝑓1(𝑡, 𝑟)

…
𝑓𝑛(𝑡, 𝑟))


, (1.39)

то систему можно компактно записать в виде одного 𝑛-мерного уравнения

̇𝑟 = 𝑓(𝑡, 𝑟). (1.40)

Вектор-функция 𝜑 - решение системы на (𝑎, 𝑏), если

𝜑 ∈ 𝐶1((𝑎, 𝑏) → ℝ𝑛);
𝜑̇(𝑡) ≡ 𝑓(𝑡, 𝜑(𝑡))  на (𝑎, 𝑏).

(1.41)

Definition 1.18 

1.18 Линейная однородная и неоднородная система ДУ

Линейной системой дифференциальных уравнений называют систему вида

̇𝑟 = 𝑃(𝑡)𝑟 + 𝑞(𝑡), (1.42)

где 𝑃 ∈ 𝑀𝑛(𝐶(𝑎, 𝑏)),  𝑞 ∈ 𝐶((𝑎, 𝑏) → ℝ𝑛).

Если 𝑞 ≡ 0 на (𝑎, 𝑏), то система, то есть

̇𝑟 = 𝑃(𝑡)𝑟, (1.43)

называется однородной, в противном случае – неоднородной.

Definition 1.19 

1.19 Функция оригинал

Функцией-оригиналом называется комплекснозначная функция 𝑓(𝑡) вещественной 

переменной 𝑡, удовлетворяющая следующим условиям:

• 𝑓(𝑡) = 0, если 𝑡 < 0;

• 𝑓(𝑡) интегрируема на любом конечном интервале оси 𝑡;
• с возрастанием 𝑡 модуль функции 𝑓(𝑡) растет не быстрее некоторой показательной 

функции, то есть существуют числа 𝑀 > 0 и 𝑠0 ≥ 0 такие, что для всех 𝑡 имеем:

|𝑓(𝑡)| ≤ 𝑀𝑒𝑠0𝑡. (1.44)

Definition 1.20 

1.20 Преобразование Лапласа
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Преобразованием Лапласа 𝐿 функции-оригинала 𝑓(𝑡), заданной на [0, ∞), 
называется преобразование вида:

(𝐿𝑓)(𝑝) = 𝐹(𝑝) = ∫
∞

0
𝑓(𝑡)𝑒−𝑝𝑡𝑑𝑡, (1.45)

где образ функции 𝑓  будем обозначать за 𝐹(𝑝). Функцию 𝐹(𝑝) называют изображением 

функции-оригинала 𝑓(𝑡).
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II Теоремы

Theorem 2.1 

2.1 О существовании решения ДУ

Уравнение 𝑦′ = 𝑓(𝑥) имеет бесконечно много решений, поскольку в формулу 𝑦 =
∫ 𝑓(𝑥)𝑑𝑥 + 𝐶 входит произвольная постоянная 𝐶 .

Для того, чтобы получить единственное решение уравнения 𝑦′ = 𝑓(𝑥), подставим в 

начальное условие, то есть потребуем, чтобы функция 𝑦 принимала заданное значение 𝑦0 

при 𝑥 = 𝑥0:

𝑦 |𝑥=𝑥0
= 𝑦0 (2.1)

Действительно, пусть функция 𝑓(𝑥) непрерывна на некотором интервале (𝑎, 𝑏) и точка 

𝑥0 ∈ (𝑎, 𝑏). Заменяя в формуле 𝑦 = ∫ 𝑓(𝑥)𝑑𝑥 + 𝐶 неопределенный интеграл 

определенным с переменным верхним пределом 𝑥 и нижним пределом 𝑥0, получим:

𝑦 = ∫
𝑥

𝑥0

𝑓(𝑡)𝑑𝑡 + 𝐶. (2.2)

Удовлетворим начальному условию. При 𝑥 = 𝑥0 интеграл обращается в нуль и мы 

получим:

𝐶 = 𝑦0. (2.3)

Таким образом, уравнение 𝑦′ = 𝑓(𝑥) при начальном условии Уравнение (2.1) имеет 

единственное решение:

𝑦 = ∫
𝑥

𝑥0

𝑓(𝑡)𝑑𝑡 + 𝑦0. (2.4)

Отметим, что это решение единственно на всем интервале (𝑎, 𝑏).

Theorem 2.2 

2.2 Решение однородного дифференциального уравнения

Сведем уравнение Уравнение (2.11) к уравнению с разделяющимися переменными.

Для этого сделаем замену:

𝑦
𝑥

= 𝑢 ⇔ 𝑦 = 𝑢𝑥. (2.5)

Следовательно,
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𝑦′ = 𝑢′ ⋅ 𝑥 + 𝑢,  𝑑𝑦 = 𝑢𝑑𝑥 + 𝑥𝑑𝑢. (2.6)

Подставим 𝑦 и 𝑦′ в уравнение Уравнение (2.11):

𝑢′ ⋅ 𝑥 + 𝑢 = 𝑓(𝑢) ⇔ 𝑢′ ⋅ 𝑥 = 𝑓(𝑢) − 𝑢 ⇔ 𝑑𝑢
𝑑𝑥

⋅ 𝑥 = 𝑓(𝑢) − 𝑢 ⇔

⇔ 𝑑𝑢
𝑓(𝑢) − 𝑢

= 𝑑𝑥
𝑥

⇔ ∫ 𝑑𝑢
𝑓(𝑢) − 𝑢

= ln|𝑥| + ln 𝐶1 ⇔ 𝑥 = 𝑒∫ 𝑑𝑢
𝑓(𝑢)−𝑢 .

(2.7)

Как определить, что уравнение однородное?

С помощью метода размерностей.

Припишем функции 𝑦, переменной 𝑥 и их дифференциалам некоторые размерности. 

Например, метры:

𝑥 ∼ м,  𝑦 ∼ м,  𝑑𝑥 ∼ м,  𝑑𝑦 ∼ м. (2.8)

Производная 𝑦′ = 𝑑𝑦
𝑑𝑥 ∼ 1 – безразмерная величина.

Для трансцендентных функций (то есть функций, не являющихся алгебраическими: 

sin 𝑥, cos 𝑥, tg 𝑥, ctg 𝑥, 𝑒𝑥, 𝑎𝑥, ln 𝑥, arcsin 𝑥, arccos 𝑥, arctan 𝑥, arccot 𝑥) в качестве аргумента 

должна стоять безразмерная величина: 𝑒
𝑦
𝑥 , tg(𝑦

𝑥) и так далее.

Уравнение будет однородным, если в нем складываются величины одной 

размерности.

Например:

(𝑥2 + 𝑥𝑦)𝑦′ = 𝑥√𝑥2 − 𝑦2 + 𝑥𝑦 + 𝑦2,

(м2 + м ⋅ м) ⋅ 1 = м ⋅
√

м2 − м2 + м ⋅ м + м2.
(2.9)

Следовательно, уравнение однородное.

Theorem 2.3 

2.3 О решении линейного однородного уравнения

Рассмотрим сначала соответствующе однородное уравнение при 𝑞(𝑥) = 0:

𝑦′ + 𝑝(𝑥)𝑦 = 0. (2.10)

Переменные здесь разделяются:

𝑑𝑦
𝑑𝑥

+ 𝑝(𝑥)𝑦 = 0  | ⋅ 𝑑𝑥
𝑦

←  здесь мы предполагаем, что 𝑦 ≠ 0. (2.11)

⇔ 𝑑𝑦
𝑦

+ 𝑝(𝑥)𝑑𝑥 = 0 ⇔ ln|𝑦| = − ∫ 𝑝(𝑥)𝑑𝑥 ⇔ 𝑦 = 𝐶 ⋅ 𝑒− ∫ 𝑝(𝑥)𝑑𝑥. (2.12)
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Здесь на постоянную 𝐶 мы не накладываем никаких ограничений. Делается это для того, 

чтобы решение 𝑦 = 0 вошло в ответ (Уравнение (2.12)). Заменим неопределенный 

интеграл определенным с переменным верхним пределом:

𝑦 = 𝐶 ⋅ 𝑒− ∫𝑥
𝑥0

𝑝(𝑡)𝑑𝑥. (2.13)

Если есть начальное условие:

𝑦 |𝑥=𝑥0
= 𝑦0, (2.14)

то 𝐶 = 𝑦0. Для интегрирования уравнения 𝑦′ + 𝑝(𝑥)𝑦 = 𝑞(𝑥) воспользуемся методом 

вариации произвольных постоянных.

Будем искать решение этого уравнения в следующем виде:

𝑦 = 𝑢 ⋅ 𝑒− ∫ 𝑝(𝑥)𝑑𝑥, (2.15)

считая 𝑢 не постоянной, а некоторой функцией от 𝑥. Дифференцируя, находим

𝑦′ = 𝑢′ ⋅ 𝑒− ∫ 𝑝(𝑥)𝑑𝑥 + 𝑢 ⋅ 𝑒− ∫ 𝑝(𝑥)𝑑𝑥 ⋅ (−𝑝(𝑥)). (2.16)

Подставив 𝑦′ в уравнение 𝑦′ + 𝑝(𝑥)𝑦 = 𝑞(𝑥), получим:

𝑢′ ⋅ 𝑒− ∫ 𝑝(𝑥)𝑑𝑥 + 𝑢 ⋅ 𝑒− ∫ 𝑝(𝑥)𝑑𝑥 ⋅ (−𝑝(𝑥)) + 𝑝(𝑥)𝑢 ⋅ 𝑒− ∫ 𝑝(𝑥)𝑑𝑥 = 𝑞(𝑥) ⇔

⇔ 𝑢′ ⋅ 𝑒− ∫ 𝑝(𝑥)𝑑𝑥 = 𝑞(𝑥) ⇔ 𝑑𝑢 = 𝑞(𝑥) ⋅ 𝑒∫ 𝑝(𝑥)𝑑𝑥 ⋅ 𝑑𝑥 ⇔

⇔ 𝑢 = ∫ 𝑞(𝑥) ⋅ 𝑒∫ 𝑝(𝑥)𝑑𝑥 ⋅ 𝑑𝑥 + 𝐶.

(2.17)

Подставляя 𝑢 в формулу Уравнение (2.15), получим:

𝑦 = 𝑒− ∫ 𝑝(𝑥)𝑑𝑥 ⋅ (∫ 𝑞(𝑥) ⋅ 𝑒∫ 𝑝(𝑥)𝑑𝑥 ⋅ 𝑑𝑥 + 𝐶). (2.18)

Заменим неопределенные интегралы на интегралы с переменными верхним пределом:

𝑦(𝑥) = 𝑒− ∫𝑥
𝑥0

𝑝(𝑢)𝑑𝑢 ⋅ (∫
𝑥

𝑥0

𝑞(𝑣) ⋅ 𝑒∫𝑣
𝑥0

𝑝(𝑢)𝑑𝑢 ⋅ 𝑑𝑣 + 𝐶). (2.19)

Для ясности мы обозначаем переменные интегрирования различными буквами 𝑢 и 𝑣, 

отличными от буквы 𝑥.

Если задано начальное условие: 𝑦 |𝑥=𝑥0
= 𝑦0, то 𝐶 = 𝑦0 и формула Уравнение (2.19) 

принимает вид:

𝑦(𝑥) = 𝑒− ∫𝑥
𝑥0

𝑝(𝑢)𝑑𝑢 ⋅ (∫
𝑥

𝑥0

𝑞(𝑣) ⋅ 𝑒∫𝑣
𝑥0

𝑝(𝑢)𝑑𝑢 ⋅ 𝑑𝑣 + 𝑦0). (2.20)

𝑦(𝑥) = 𝑦0 ⋅ 𝑒− ∫𝑥
𝑥0

𝑝(𝑢)𝑑𝑢
⏟

𝑦̃

+ 𝑒− ∫𝑥
𝑥0

𝑝(𝑢)𝑑𝑢 ⋅ ∫
𝑥

𝑥0

𝑞(𝑣) ⋅ 𝑒∫𝑣
𝑥0

𝑝(𝑢)𝑑𝑢 ⋅ 𝑑𝑣
⏟

𝑌

, (2.21)

то есть 𝑦 = 𝑦 + 𝑌 .

14
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Theorem 2.4 

2.4 Метод Лагранжа (вариации произвольной постоянной)

Рассмотрим уравнение второго порядка:

𝑦″ + 𝑎1(𝑥)𝑦′ + 𝑎2(𝑥)𝑦 = 𝑓(𝑥). (2.22)

Пусть общее решение соответствующего однородного уравнения имеет вид:

𝑦 = 𝐶1𝑦1 + 𝐶2𝑦2, (2.23)

где 𝑦1, 𝑦2 – линейно независимые решения однородного уравнения, 𝐶1, 𝐶2 – 

произвольные постоянные.

Будем искать частное решение ЛНДУ (Уравнение (2.22)) в следующем виде:

𝑌 = 𝑢1(𝑥)𝑦1 + 𝑢2(𝑥)𝑦2. (2.24)

Здесь 𝑢1(𝑥), 𝑢2(𝑥) – некоторые функции, которые нам нужно найти.

Отметим сходство формул Уравнение (2.23) и Уравнение (2.24). Мы варьируем 

произвольные постоянные 𝐶1, 𝐶2, в формуле Уравнение (2.23) и получаем вместо них 

некоторые функции 𝑢1(𝑥), 𝑢2(𝑥).

Найдем производные 𝑌 ′, 𝑌 ″ и подставим их в уравнение Уравнение (2.22).

𝑌 ′ = 𝑢′
1𝑦1 + 𝑢1𝑦′

1 + 𝑢′
2𝑦2 + 𝑢2𝑦′

2. (2.25)

Так как мы ищем частное решение уравнение, наложим на функции 𝑢1, 𝑢2 

дополнительное ограничение:

𝑢′
1𝑦1 + 𝑢′

2𝑦2 = 0. (2.26)

Тогда 𝑌 ′ примет вид:

𝑌 ′ = 𝑢1𝑦′
1 + 𝑢2𝑦′

2. (2.27)

Соответственно,

𝑌 ″ = 𝑢′
1𝑦′

1 + 𝑢1𝑦″
1 + 𝑢′

2𝑦′
2 + 𝑢2𝑦″

2 . (2.28)

Подставим 𝑌 , 𝑌 ′, 𝑌 ″ в исходное уравнение Уравнение (2.22):

𝑢′
1𝑦′

1 + 𝑢1𝑦″
1 + 𝑢′

2𝑦′
2 + 𝑢2𝑦″

2 + 𝑎1𝑢1𝑦′
1 + 𝑎1𝑢2𝑦′

2 + 𝑎2𝑢1𝑦1 + 𝑎2𝑢2𝑦2 = 𝑓(𝑥) ⇔
⇔ 𝑢1 𝑦″

1 + 𝑎1𝑦′
1 + 𝑎2𝑦1⏟

=0(𝑦1− решение ЛОДУ)

+ 𝑢2 𝑦″
2 + 𝑎1𝑦′

2 + 𝑎2𝑦2⏟
=0(𝑦2− решение ЛОДУ)

+ 𝑢′
1𝑦′

1 + 𝑢′
2𝑦′

2 = 𝑓(𝑥) ⇔

⇔ 𝑢′
1𝑦′

1 + 𝑢′
2𝑦′

2 = 𝑓(𝑥).

(2.29)

Учитывая введенные ранее ограничения Уравнение (2.26), получаем систему уравнений 

для функций 𝑢′
1, 𝑢′

2:

{𝑢′
1𝑦1 + 𝑢′

2𝑦2 = 0
𝑢′

1𝑦′
1 + 𝑢′

2𝑦′
2 = 𝑓(𝑥). (2.30)

15
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Определитель Вронского не равен нулю ни в одной точке в силу линейной 

независимости решений 𝑦1, 𝑦2.

Следовательно, система Уравнение (2.30) разрешима единственным образом и при 

любой правой части. Пусть её решения имеют вид:

{𝑢′
1 = 𝜑1(𝑥)

𝑢′
2 = 𝜑2(𝑥). (2.31)

Тогда функции 𝑢1(𝑥), 𝑢2(𝑥) находятся интегрированием:

{𝑢1 = ∫ 𝜑1(𝑥) 𝑑𝑥
𝑢2 = ∫ 𝜑2(𝑥) 𝑑𝑥. (2.32)

2) Рассмотрим уравнение 𝑛-го порядка:

𝑦(𝑛) + 𝑎1(𝑥)𝑦(𝑛−1) + … + 𝑎𝑛(𝑥)𝑦 = 𝑓(𝑥). (2.33)

Здесь все построения аналогичны.

Решение ЛОДУ имеет вид:

𝑦 = 𝐶1𝑦1 + 𝐶2𝑦2 + … + 𝐶𝑛𝑦𝑛. (2.34)

Частное решение ЛНДУ ищем в виде:

𝑌 = 𝑢1(𝑥)𝑦1(𝑥) + 𝑢2(𝑥)𝑦2(𝑥) + … + 𝑢𝑛(𝑥)𝑦𝑛(𝑥). (2.35)

Следуя описанной процедуре, получаем следующую систему уравнений для функций 

𝑢′
1, 𝑢′

2, …, 𝑢′
𝑛:

{


𝑢′

1𝑦1 + 𝑢′
2𝑦2 + … + 𝑢′

𝑛𝑦𝑛 = 0
𝑢′

1𝑦′
1 + 𝑢′

2𝑦′
2 + … + 𝑢′

𝑛𝑦′
𝑛 = 0

………
𝑢′

1𝑦
(𝑛−1)
1 + 𝑢′

2𝑦
(𝑛−1)
2 + … + 𝑢′

𝑛𝑦(𝑛−1)
𝑛 = 𝑓(𝑥).

(2.36)

Определитель этой системы – это определитель Вронского:

|



 𝑦1

𝑦′
1

…
𝑦(𝑛−1)

1

𝑦2
𝑦′

2
…

𝑦(𝑛−1)
2

…
…
…
…

𝑦𝑛
𝑦′

𝑛
…

𝑦(𝑛−1)
𝑛 |






≠ 0  ни в одной точке. (2.37)

Следовательно, система Уравнение (2.36) разрешима единственным образом и при любой 

правой части. Решая её, находим 𝑢′
1, 𝑢′

2, …, 𝑢′
𝑛. Функции 𝑢1(𝑥), 𝑢2(𝑥), …, 𝑢𝑛(𝑥) находятся 

интегрированием.

Theorem 2.5 

2.5 Метод Бернулли
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Напомним, что уравнением Бернулли называется уравнение вида

𝑦′ + 𝑝(𝑥)𝑦 = 𝑞(𝑥)𝑦𝑎,   где 𝑎 = conts,  𝑎 ≠ 0,  𝑎 ≠ 1. (2.38)

Его решение можно получить двумя способами.

I. Сведение к линейному уравнению.

Разделим обе части уравнения Уравнение (2.38) на 𝑦𝑎:

𝑦′

𝑦𝑎 + 𝑝(𝑥)𝑦1−𝑎 = 𝑞(𝑥). (2.39)

Сделаем замену: 𝑧 = 𝑦1−𝑎.

Соответственно,

𝑧′ = (1 − 𝑎) ⋅ 𝑦−𝑎 ⋅ 𝑦′ ⇔ 𝑦′

𝑦𝑎 = 𝑧′

1 − 𝑎
. (2.40)

Подстановим 𝑧 и 𝑧′ в исходное уравнение:

1
1 − 𝑎

𝑧′ + 𝑝(𝑥)𝑧 = 𝑞(𝑥). (2.41)

Мы получили линейное уравнение.

II. (сведение к уравнению с разделяющимися переменными)

Сделаем замену переменной как в линейном уравнении:

𝑦 = 𝑢 ⋅ 𝑒− ∫ 𝑝(𝑥)𝑑𝑥. (2.42)

Тогда

𝑦′ = 𝑢′ ⋅ 𝑒− ∫ 𝑝(𝑥)𝑑𝑥 + 𝑢 ⋅ 𝑒− ∫ 𝑝(𝑥)𝑑𝑥 ⋅ (−𝑝(𝑥)). (2.43)

Подставим 𝑦 и 𝑦′ в уравнение Уравнение (2.38):

𝑢′ ⋅ 𝑒− ∫ 𝑝(𝑥)𝑑𝑥 + 𝑢 ⋅ 𝑒− ∫ 𝑝(𝑥)𝑑𝑥 ⋅ (−𝑝(𝑥)) + 𝑝(𝑥)𝑢 ⋅ 𝑒− ∫ 𝑝(𝑥)𝑑𝑥 =

= 𝑞(𝑥)𝑢𝑎 ⋅ 𝑒−𝑎 ∫ 𝑝(𝑥)𝑑𝑥 ⇔

⇔ 𝑢′ ⋅ 𝑒− ∫ 𝑝(𝑥)𝑑𝑥 = 𝑞(𝑥)𝑢𝑎 ⋅ 𝑒−𝑎 ∫ 𝑝(𝑥)𝑑𝑥 ⇔

⇔ 𝑑𝑢 = 𝑞(𝑥)𝑢𝑎 ⋅ 𝑒(1−𝑎) ∫ 𝑝(𝑥)𝑑𝑥 ⋅ 𝑑𝑥 ⇔

⇔ 𝑑𝑢
𝑢𝑎 = 𝑞(𝑥) ⋅ 𝑒(1−𝑎) ∫ 𝑝(𝑥)𝑑𝑥 ⋅ 𝑑𝑥.

(2.44)

Мы получили уравнение с разделяющимися переменными.

Theorem 2.6 

2.6 О полном дифференциале

17



Дифференциальные уравнения 2 Теоремы

Если 𝑀𝑑𝑥 + 𝑁𝑑𝑦 представляет собой полный дифференциал, то восстановить 

функцию 𝑢(𝑥, 𝑦) с точностью до константы по её известному полному дифференциалу

𝑑𝑢 = 𝑀(𝑥, 𝑦)𝑑𝑥 + 𝑁(𝑥, 𝑦)𝑑𝑦 (2.45)

можно с помощью криволинейного интеграла. А именно зафиксируем некоторую точку 

(𝑥0, 𝑦0). Тогда криволинейный интеграл

𝑢(𝑥, 𝑦) = ∫
𝐿
(𝑀(𝑥, 𝑦)𝑑𝑥 + 𝑁(𝑥, 𝑦)𝑑𝑦) (2.46)

по произвольной кривой от точки (𝑥0, 𝑦0) до текущей точки (𝑥, 𝑦) даст значение 

функции 𝑢(𝑥, 𝑦), дифференциал которой имеет вид Уравнение (2.45). Изменение 

начальной точки (𝑥0, 𝑦0) приводит к добавлению постоянной (функция 𝑢(𝑥, 𝑦) находится 

с точностью до константы).

Формула Уравнение (2.46) принимает более удобный вид, если кривую 𝐿 выбрать в 

виде ломаной, показанной на Рис. 2.1.

Рис. 2.1. Кривая интегрирования 𝐿.

При таком выборе 𝐿 имеем:

𝑢(𝑥, 𝑦) = ∫
𝑥

𝑥0

𝑀(𝑥, 𝑦0)𝑑𝑥 + ∫
𝑦

𝑦0

𝑁(𝑥, 𝑦)𝑑𝑦. (2.47)

Соответственно, решение уравнения:

𝑢(𝑥, 𝑦) = 𝐶. (2.48)

18
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Theorem 2.7 

2.7 Об интегрирующем множителе

Напомним вид интегрирующего множителя:

𝑑𝑢 = 𝜇𝑀𝑑𝑥 + 𝜇𝑁𝑑𝑦. (2.49)

Напишем условие того, что 𝑑𝑢 является полным дифференциалом:

𝜕
𝜕𝑦

(𝜇𝑀) = 𝜕
𝜕𝑥

(𝜇𝑁) ⇔

⇔ 𝜕𝜇
𝜕𝑦

⋅ 𝑀 + 𝜇 ⋅ 𝜕𝑀
𝜕𝑦

= 𝜕𝜇
𝜕𝑥

⋅ 𝑁 + 𝜇 ⋅ 𝜕𝑁
𝜕𝑥

⇔

⇔ 𝑁 𝜕𝜇
𝜕𝑥

− 𝑀 𝜕𝜇
𝜕𝑦

= (𝜕𝑀
𝜕𝑦

− 𝜕𝑁
𝜕𝑥

)𝜇 ⇔

⇔ 𝑁 ⋅ 1
𝜇

⋅ 𝜕𝜇
𝜕𝑦⏟

− 𝑀 ⋅ 1
𝜇

⋅ 𝜕𝜇
𝜕𝑦⏟

𝜕 ln 𝜇
𝜕𝑦

= 𝜕𝑀
𝜕𝑦

− 𝜕𝑁
𝜕𝑥

⇔

⇔ 𝑁 ⋅ 𝜕 ln 𝜇
𝜕𝑥

− 𝑀 ⋅ 𝜕 ln 𝜇
𝜕𝑦

= 𝜕𝑀
𝜕𝑦

− 𝜕𝑁
𝜕𝑥

.

(2.50)

Таким образом, для нахождения инегрирующего множителя мы получим уравнение в 

частных производных. Иногда удается найти его решение. Если 𝜇 = 𝜇(𝑥), то 
𝜕𝜇
𝜕𝑦 = 0 и 

уравнение Уравнение (2.50) примет вид:

𝑑 ln 𝜇
𝑑𝑥

=
𝜕𝑀
𝜕𝑦 − 𝜕𝑁

𝜕𝑥

𝑁
. (2.51)

Если правая часть уравнения не зависит от 𝑦, то ln 𝜇 находится интегрированием.

Theorem 2.8 

2.8 О существовании решения ДУ высших порядков

Пусть функция 𝑓(𝑥, 𝑦, 𝑦′, …, 𝑦(𝑛−1)) однозначна, непрерывна и имеет непрерывные 

частные производные по 𝑦, 𝑦′, …, 𝑦(𝑛−1) при значениях аргументов (𝑥0, 𝑦0, 𝑦′
0, …, 𝑦(𝑛−1)

0 ) 

и всех значениях, достаточно близких к ним. Тогда уравнение 𝑦(𝑛) =
𝑓(𝑥, 𝑦, 𝑦′, 𝑦″, …, 𝑦(𝑛−1)) имеет единственное решение, удовлетворяющее начальным 

условиям 

{


𝑦|𝑥=𝑥0 =𝑦0

𝑦′|𝑥=𝑥0 =𝑦′
0

…
𝑦(𝑛−1) |𝑥=𝑥0 =𝑦(𝑛−1)

0 .

Theorem 2.9 
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2.9 Замены для уравнений, допускающих понижение порядка

1. Уравнения вида 𝑦(𝑛) = 𝑓(𝑥).

Уравнение 𝑦(𝑛) = 𝑓(𝑥) решается с помощью 𝑛-кратного интегрирования.

2. Уравнения вида Φ(𝑥, 𝑦(𝑘), 𝑦(𝑘+1), …, 𝑦(𝑛) = 0.

Здесь уравнение не содержит функции 𝑦 и её нескольких последовательных 

производных 𝑦′, 𝑦″, …, 𝑦(𝑘−1).

Сделаем замену:

𝑧(𝑥) = 𝑦(𝑘). (2.52)

Тогда порядок уравнения понизится на 𝑘 единиц:

Φ(𝑥, 𝑧, 𝑧′, …, 𝑧(𝑛−𝑘)) = 0. (2.53)

Если мы найдем общий интеграл этого последнего уравнения

𝑧 = 𝜑(𝑥, 𝐶1, 𝐶2, …, 𝐶𝑛−𝑘), (2.54)

то 𝑦 определится из уравнения:

𝑦(𝑘) = 𝜑(𝑥, 𝐶1, 𝐶2, …, 𝐶𝑛−𝑘). (2.55)

3. Уравнения вида Φ(𝑦, 𝑦′, 𝑦″, …, 𝑦(𝑛)) = 0.

Здесь уравнение не содержит независимой переменной 𝑥.

Примем 𝑦 за независимую переменную и сделаем замену:

𝑦′ = 𝑝(𝑦). (2.56)

Этим мы понизим порядок уравнения на 1. В ответе получим функцию 𝑥 = 𝑥(𝑦). 
Найдем, как преобразуются старшие производные при такой замене.

𝑦″ = 𝑑
𝑑𝑥

(

 𝑑𝑦

𝑑𝑥⏟
𝑝 )


 = 𝑑

𝑑𝑥
(𝑝(𝑦)) = 𝑑𝑝

𝑑𝑦
⋅ 𝑑𝑦

𝑑𝑥⏟
𝑝

= 𝑝 ⋅ 𝑑𝑝
𝑑𝑦

. (2.57)

𝑦‴ = 𝑑
𝑑𝑥

(𝑦″) = 𝑑
𝑑𝑥

(𝑝(𝑦) ⋅ 𝑑𝑝
𝑑𝑦

) = 𝑑𝑝
𝑑𝑥

⋅ 𝑑𝑝
𝑑𝑦

+ 𝑝(𝑦) ⋅ 𝑑
𝑑𝑥

(𝑑𝑝
𝑑𝑦

) =

= 𝑝 ⋅ (𝑑𝑝
𝑑𝑦

)
2

+ 𝑝2 ⋅ 𝑑2𝑝
𝑑𝑦2 .

(2.58)

4. Уравнения вида 𝑑
𝑑𝑥Φ(𝑥, 𝑦, 𝑦′, …, 𝑦(𝑛−1)) = 0.

Здесь левая часть уравнения представляет собой полную производную по 𝑥. 

Проинтегрировав уравнение, мы понизим его порядок на 1.

5. Уравнения вида Φ(𝑥, 𝑦, 𝑦′, …, 𝑦(𝑛)) = 0, где Φ – однородная функция относительно 

𝑦, 𝑦′, …, 𝑦(𝑛).
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Φ(𝑥, 𝑦, 𝑦′, …, 𝑦(𝑛)) называется однородной функцией 𝑘-го порядка относительно 

переменных 𝑦, 𝑦′, …, 𝑦(𝑛), если она удовлетворяет следующему свойству:

Φ(𝑥, 𝑡𝑦, 𝑡𝑦′, …, 𝑡𝑦(𝑛)) = 𝑡𝑘 ⋅ Φ(𝑥, 𝑦, 𝑦′, …, 𝑦(𝑛)). (2.59)

При 𝑦 ≠ 0 сделаем замену переменных:

𝑧 = 𝑦′

𝑦
. (2.60)

Тогда производные преобразуются по следующему правилу:

𝑦′ = 𝑧𝑦,

𝑦″ = 𝑧′𝑦 + 𝑧𝑦′ = 𝑧′𝑦 + 𝑧2𝑦.
(2.61)

И так далее. Таким образом, порядок уравнения понизится на 1. Функцию 𝑦 = 0 следует 

рассмотреть отдельно.

Theorem 2.10 

2.10 Свойства решений линейного однородного ДУ

Theorem 2.11 

2.11 Необходимое условие линейной зависимости решений

Theorem 2.12 

2.12 Достаточное условие линейной зависимости решений

Theorem 2.13 

2.13 О базисе пространства решений

Theorem 2.14 

2.14 Общее решение линейного неоднородного ДУ
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Theorem 2.15 

2.15 Принцип суперпозиции

Докажите, что если 𝜑1 – решение системы ̇𝑟 = 𝑃(𝑡)𝑟 + 𝑞1(𝑡), 𝜑2 – решение системы 

̇𝑟 = 𝑃(𝑡)𝑟 + 𝑞2(𝑡), то 𝜑1 + 𝜑2 – решение системы ̇𝑟 = 𝑃(𝑡)𝑟 + 𝑞1(𝑡) + 𝑞2(𝑡).

Theorem 2.16 

2.16 Метод вариации произвольных постоянных

Theorem 2.17 

2.17 О ФСР для различных вещественных корней 

характеристического многочлена

Theorem 2.18 

2.18 О ФСР для кратных вещественных корней 

характеристического многочлена

Theorem 2.19 

2.19 Линейное однородное ДУ второго порядка с постоянными 

коэффициентами

Theorem 2.20 

2.20 Метод неопределенных коэффициентов

22



Дифференциальные уравнения 2 Теоремы

Theorem 2.21 

2.21 Метод исключения для решения системы ДУ

Метод исключения аналогичен соответствующему алгебраическому методу.

Если одно из уравнений системы позволяет выразить одну из неизвестных функций 

через другие, то сделаем это и подставим данное выражение в остальные уравнения. Мы 

получим систему из (𝑛 − 1)-го уравнения с (𝑛 − 1)-ой неизвестной функцией. Однако, 

порядок уравнений возрастет. Повторяем эту процедуру до тех пор, пока не придем к 

одному уравнению 𝑛-го порядка. Решаем это уравнение и через его решение выражаем 

остальные искомые функции.

Проиллюстрируем этот метод на примере системы двух уравнений:

{

𝑑𝑦1

𝑑𝑥 = 𝑎𝑦1 + 𝑏𝑦2 + 𝑓(𝑥)
𝑑𝑦2
𝑑𝑥 = 𝑐𝑦1 + 𝑑𝑦2 + 𝑔(𝑥).

(2.62)

Здесь 𝑎, 𝑏, 𝑐, 𝑑 – постоянные коэффициенты, а 𝑓(𝑥) и 𝑔(𝑥) – заданные функции. 𝑦1(𝑥) и 

𝑦2(𝑥) – искомые функции.

Выразим 𝑦2 из первого уравнения системы Уравнение (2.62):

𝑦2 = 1
𝑏

⋅ ( 𝑑𝑦1
𝑑𝑥 − 𝑎𝑦1 − 𝑓(𝑥)

). (2.63)

Подставим во второе уравнение системы Уравнение (2.62) вместо 𝑦2 правую часть 

Уравнение (2.63), получаем уравнение второго порядка относительно 𝑦1(𝑥):

𝐴𝑑2𝑦1
𝑑𝑥2 + 𝐵𝑑𝑦1

𝑑𝑥
+ 𝐶𝑦1 + 𝑃(𝑥) = 0, (2.64)

где 𝐴, 𝐵, 𝐶 – некоторые постоянные.

Решая уравнение Уравнение (2.64), находим 𝑦1 = 𝑦1(𝑥). Подставим найденное 

выражение для 𝑦1 и 
𝑑𝑦1
𝑑𝑦  в Уравнение (2.63), найдем 𝑦2.

Theorem 2.22 

2.22 Метод Эйлера для решения однородных линейных систем ДУ 

при простых собственных числах

Матричный метод применим только для линейных однородных систем уравнений с 

постоянными коэффициентами:
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{


𝑦′

1 = 𝑎11𝑦1 + 𝑎12𝑦2 + … + 𝑎1𝑛𝑦𝑛
𝑦′

2 = 𝑎21𝑦1 + 𝑎22𝑦2 + … + 𝑎2𝑛𝑦𝑛
…………
𝑦′

𝑛 = 𝑎𝑛1𝑦1 + 𝑎𝑛2𝑦2 + …𝑎𝑛𝑛𝑦𝑛.

(2.65)

где 𝑎𝑖𝑗 – некоторые постоянные коэффициенты.

Система уравнений Уравнение (2.65) может быть записана в матричном виде:

𝑌 ′ = 𝐴𝑌 , (2.66)

где введены следующие обозначения:

𝑌 =

(




𝑦1
𝑦2
…
𝑦𝑛)





,  𝐴 =
(

𝑎11

⋮
𝑎𝑛1

…
⋱
…

𝑎1𝑛
⋮

𝑎𝑛𝑛)

,  𝑌 ′ =

(




𝑦′
1

𝑦′
2
⋮

𝑦′
𝑛)




. (2.67)

Матрица-столбец

𝑌 = 𝛿𝑦1 𝛿𝑦2 𝛿⋮𝛿𝑦𝑛 (2.68)

называется частным решением матричного уравнения Уравнение (2.66) на интервале 

(𝑎, 𝑏), если ее подстановка в уравнение обращает его в тождество для любых 𝑥 ∈ (𝑎, 𝑏).

Система 𝑛 частных решений уравнения Уравнение (2.66)

𝑌1(𝑥) =

(



𝑦(1)

1 (𝑥)
𝑦(2)

2 (𝑥)
⋮

𝑦(1)
𝑛 (𝑥))






, ……, 𝑌𝑛(𝑥) =

(



𝑦(𝑛)

1 (𝑥)
𝑦(𝑛)

2 (𝑥)
⋮

𝑦(𝑛)
𝑛 (𝑥))






(2.69)

называется фундаментальной на интервале (𝑎, 𝑏), если функции 𝑌1(𝑥), ……, 𝑌𝑛(𝑥) 
линейно независимы.

Линейная независимость решений 𝑌1(𝑥), ……, 𝑌𝑛(𝑥) уравнения Уравнение (2.66) 

эквивалентна тому, что определитель

|




𝑦(1)

1 (𝑥)
𝑦(1)

2 (𝑥)
…

𝑦(1)
𝑛 (𝑥)

𝑦(2)
1 (𝑥)

𝑦(2)
2 (𝑥)
…

𝑦(2)
𝑛 (𝑥)

…
…
…
…

𝑦(𝑛)
1 (𝑥)

𝑦(𝑛)
2 (𝑥)
…

𝑦(𝑛)
𝑛 (𝑥)|







≠ 0∀𝑥 ∈ (𝑎, 𝑏) (2.70)

Без доказательства.

Заметим, что верхние индексы (1), (2), ……, (𝑛) – это номер частного решения (а не 

порядок производной).

Общее решение матричного дифференциального уравнения Уравнение (2.66) есть 

линейная комбинация фундаментальной системы решений с произвольными 

коэффициентами 𝐶1, 𝐶2, ……𝐶𝑛:

𝑌 (𝑥) = 𝐶1𝑌1(𝑥) + 𝐶2𝑌2(𝑥) + …… + 𝐶𝑛𝑌𝑛(𝑥). (2.71)
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В обычной записи это дает решение системы Уравнение (2.65):

{



𝑦1(𝑥) = 𝐶1𝑦

(1)
1 (𝑥) + 𝐶2𝑦

(2)
1 (𝑥) + …… + 𝐶𝑛𝑦(𝑛)

1 (𝑥)
…………
𝑦𝑛(𝑥) = 𝐶1𝑦(1)

𝑛 (𝑥) + 𝐶2𝑦(2)
𝑛 (𝑥) + …… + 𝐶𝑛𝑦(𝑛)

𝑛 (𝑥)
(2.72)

Proof. Для того, чтобы проверить, что Уравнение (2.71) есть общее решение, нужно 

убедиться в том, что для любых начальных условий 𝑦1(𝑥0), 𝑦2(𝑥0), ……, 𝑦𝑛(𝑥0) можно 

найти значения 𝐶1, 𝐶2, ……, 𝐶𝑛 такие, что решение Уравнение (2.71) будет им 

удовлетворять:

{



𝑦1(𝑥0) = 𝐶1𝑦

(1)
1 (𝑥0) + …… + 𝐶𝑛𝑦(𝑛)

1 (𝑥0)
…………
𝑦𝑛(𝑥0) = 𝐶1𝑦(1)

𝑛 (𝑥0) + …… + 𝐶𝑛𝑦(𝑛)
𝑛 (𝑥0).

(2.73)

Система Уравнение (2.73) – это неоднородная линейная система аогебраических 

уравнений относительно 𝐶1, 𝐶2, ……, 𝐶𝑛. Её определитель отличен от нуля при любом 

𝑥 (формула Уравнение (2.70)), поэтому система Уравнение (2.73) однозначно 

разрешима при любых 𝑦1(𝑥0), ……, 𝑦𝑛(𝑥0), что и доказывает теорему.

∎

В соответствии с теоремой, для решения системы Уравнение (2.65) нам требуется 

найти фундаментальную систему решений уравнения Уравнение (2.66). Будем искать 

решения в следующем виде:

𝑌 (𝑥) =

(




𝜉1
𝜉2
⋮

𝜉𝑛)




⋅ 𝑒𝜆𝑥,  𝜉𝑖 ∈ ℝ (2.74)

Подставим Уравнение (2.74) в Уравнение (2.66):

(

𝜉1

⋮
𝜉𝑛)


𝜆𝑒𝜆𝑥 = 𝐴

(

𝜉1

⋮
𝜉𝑛)


𝑒𝜆𝑥. (2.75)

Сокращая на 𝑒𝜆𝑥, приходим к алгебраическому матричному уравнению:

𝐴𝑋 = 𝜆𝑋,   где 𝑋 =
(

𝜉1

⋮
𝜉𝑛)




⇔ (𝐴 − 𝐼𝜆)𝑋 = 𝕆.

(2.76)

Мы получили задачу о собственных векторах и собственных значениях матрицы 𝐴. 

Условие существования нетривиального решения уравнения Уравнение (2.76) таково:

det(𝐴 − 𝜆𝐼) = 0. (2.77)
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Корни 𝜆𝑖 этого алгебраического уравнения 𝑛-ой степени – это собственные значения 

матрицы 𝐴, а нетривиальные решения уравнения Уравнение (2.76), соответствующие 𝜆 =
𝜆𝑖 – это собственные векторы.

Подстановка собственного вектора и собственного значения в формулу 

Уравнение (2.74) даст нам решение 𝑌 (𝑥) матричного уравнения Уравнение (2.66) (или 

системы Уравнение (2.65)). Таким образом, линейно независимые собственные векторы 

матрицы 𝐴 дают нам вектор-функции из фундаментальной системы решений.

Для того, чтобы получить всю фундаментальную систему, требуется найти 𝑛 

линейно независимых решений.

При рассмотрении теории систем дифференциальных уравнений мы обозначали 

независимую переменную через 𝑥, а функции через 𝑦1, 𝑦2, ……, 𝑦𝑛 для того, чтобы 

продемонстрировать сходство с теорией отдельных дифференциальных уравнений. При 

решении задач мы будем использовать для независимой переменной более 

традиционное обозначение 𝑡, а для функций – обозначения 𝑥, 𝑦, 𝑧 во избежание 

излишней индексации.

Theorem 2.23 

2.23 Метод Эйлера для решения однородных линейных систем ДУ 

при кратных собственных числах

Если корень 𝜆 = 𝜆0 имеет кратность 𝑠, то ему должны соответствовать 𝑠 линейно 

независимых решений. Одной функции 𝑒𝜆0𝑡 будет недостаточно. В этом случае ищем 

решение в виде:

𝑌1𝑒𝜆0𝑡 + 𝑌2𝑡𝑒𝜆0𝑡 + …… + 𝑌𝑠𝑡𝑠−1𝑒𝜆0𝑡. (2.78)

Для определения координат векторов 𝑌1, 𝑌2, ……, 𝑌𝑠 подставляем Уравнение (2.78) в 

исходную систему уравнений и в каждом из уравнений приравниваем коэффициенты 

при линейно независимых функциях.

Theorem 2.24 

2.24 Общее решение линейной неоднородной системы ДУ

Theorem 2.25 

2.25 Свойства преобразования Лапласа
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1. 𝐿(𝛼𝑓 + 𝛽𝑔) = 𝛼𝐿𝑓 + 𝛽𝐿𝑔 – линейность;

Доказательство очевидно в силу линейности интеграла.

2. 𝐿(𝑓(𝑎𝑡)) = 1
𝑎𝐹(𝑝

𝑎),  𝑎 > 0 – теорема подобия;

Proof.

𝐿(𝑓(𝑎𝑡)) = ∫
∞

0
𝑒−𝑝𝑡𝑓(𝑎𝑡)𝑑𝑡. (2.79)

Замена: 𝑠 = 𝑎𝑡 ⇒ 𝑑𝑠 = 𝑎𝑑𝑡.

= ∫
∞

0
𝑒−𝑝

𝑎𝑠𝑓(𝑠)1
𝑎
𝑑𝑠 = 1

𝑎
𝐹(𝑝

𝑎
). (2.80)

∎

3. 𝐿(𝑒𝑎𝑡𝑓(𝑡)) = 𝐹(𝑝 − 𝑎) – теорема смещения;

Proof.

𝐿(𝑒𝑎𝑡𝑓(𝑡)) = ∫
∞

0
𝑒−𝑝𝑡𝑒𝑎𝑡𝑓(𝑡)𝑑𝑡 = ∫

∞

0
𝑒−(𝑝−𝑎)𝑡𝑓(𝑡)𝑑𝑡 = 𝐹(𝑝 − 𝑎). (2.81)

∎

4. 𝐿(𝑓(𝑡 − 𝑎)) = 𝑒−𝑎𝑝𝐹(𝑝),  𝑎 > 0 – теорема запаздывания;

Proof.

𝐿(𝑓(𝑡 − 𝑎)) = ∫
∞

0
𝑒−𝑝𝑡𝑓(𝑡 − 𝑎)𝑑𝑡 = (2.82)

Замена: 𝑠 = 𝑡 − 𝑎 ⇒ 𝑑𝑠 = 𝑑𝑡.

= ∫
∞

−𝑎
𝑒−𝑝𝑠𝑒−𝑎𝑝𝑓(𝑠)𝑑𝑠 = (2.83)

𝑓(𝑠) = 0 при 𝑠 < 0

= 𝑒−𝑎𝑝 ∫
∞

0
𝑒−𝑝𝑠𝑓(𝑠)𝑑𝑠 = 𝑒−𝑎𝑝𝐹(𝑝). (2.84)

∎

Theorem 2.26 

2.26 О дифференцировании изображения
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𝐿(𝑡𝑓(𝑡)) = − 𝑑
𝑑𝑝

𝐹(𝑝) (2.85)

𝐿(𝑡𝑛𝑓(𝑡)) = (−1)𝑛 𝑑𝑛

𝑑𝑝𝑛 𝐹(𝑝) (2.86)

Proof. Продифференцируем по параметру 𝑝 формулу Уравнение (2.45) из определения 

преобразования Лапласа:

𝐹(𝑝) = ∫
∞

0
𝑓(𝑡)𝑒−𝑝𝑡𝑑𝑡,

𝑑
𝑑𝑝

𝐹(𝑝) = − ∫
∞

0
𝑒−𝑝𝑡𝑡𝑓(𝑡)𝑑𝑡 = −𝐿(𝑡𝑓(𝑡)).

(2.87)

Соответственно,

𝑑𝑛

𝑑𝑝𝑛 𝐹(𝑝) = (−1)𝑛 ∫
∞

0
𝑒−𝑝𝑡𝑡𝑛𝑓(𝑡)𝑑𝑡 = (−1)𝑛𝐿(𝑡𝑛𝑓(𝑡)). (2.88)

∎

Theorem 2.27 

2.27 О дифференцировании оригинала

𝐿(𝑓 ′(𝑡)) = 𝑝𝐹(𝑝) − 𝑓(0). (2.89)

𝐿(𝑓 (𝑛)(𝑡)) = 𝑝𝑛𝐹(𝑝) − 𝑝𝑛−1𝑓(0) − 𝑝𝑛−2𝑓 ′(0) − … − 𝑓 (𝑛−1)(0). (2.90)

Proof.

𝐿(𝑓 ′(𝑡)) = ∫
∞

0
𝑓 ′(𝑡)𝑒−𝑝𝑡𝑑𝑡 ⊜ (2.91)

𝑢 = 𝑒−𝑝𝑡,  𝑑𝑢 = −𝑝𝑒−𝑝𝑡𝑑𝑡,  𝑣 = 𝑓(𝑡),  𝑑𝑣 = 𝑓 ′(𝑡)𝑑𝑡 (2.92)

⊜ 𝑓(𝑡)𝑒−𝑝𝑡 |∞0 + 𝑝 ∫
∞

0
𝑓(𝑡)𝑒−𝑝𝑡𝑑𝑡 = −𝑓(0) + 𝑝𝐹(𝑝). (2.93)

Формула для 𝑓 (𝑛)(𝑡) доказывается по индукции.

База проверена (𝑛 = 1). Переход 𝑛 → 𝑛 + 1:

𝐿(𝑓 (𝑛+1)(𝑡)) = ∫
∞

0
𝑓 (𝑛+1)(𝑡)𝑒−𝑝𝑡𝑑𝑡 ⊜ (2.94)

𝑢 = 𝑒−𝑝𝑡,  𝑑𝑢 = −𝑝𝑒−𝑝𝑡𝑑𝑡,  𝑣 = 𝑓 (𝑛)(𝑡),  𝑑𝑣 = 𝑓 (𝑛+1)(𝑡)𝑑𝑡 (2.95)
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⊜ 𝑓 (𝑛)(𝑡)𝑒−𝑝𝑡 |∞0 + 𝑝 ∫
∞

0
𝑓 (𝑛)(𝑡)𝑒(−𝑝𝑡)𝑑𝑡 =

= −𝑓 (𝑛)(0) + 𝑝(𝑝𝑛𝐹(𝑝) − 𝑝(𝑛−1)𝑓(0) − 𝑝𝑛−2𝑓 ′(0) − … − 𝑓 (𝑛−1)(0)) =

= 𝑝(𝑛+1)𝐹(𝑝) − 𝑝𝑛𝑓(0) − 𝑝𝑛−1𝑓 ′(0) − … − 𝑓 (𝑛)(0).

(2.96)

∎

Theorem 2.28 

2.28 Об интегрировании оригинала

𝐿(∫
𝑡

0
𝑓(𝜏)𝑑𝜏) = 𝐹(𝑝)

𝑝
. (2.97)

Proof. Введем функцию Хевисайда по следующему правилу:

𝜃(𝑡) = {1, 𝑡 ≥ 0
0, 𝑡 < 0 (2.98)

Тогда:

𝐿(∫
𝑡

0
𝑓(𝜏)𝑑𝜏) = 𝐿

(



∫
∞

0
𝜃(1 − 𝜏)⏟

=1  при 0≤𝜏≤𝑡

⋅ 𝑓(𝜏)𝑑𝜏

)



= 𝐿(𝜃 ∗ 𝑓) = 𝐿(𝜃)𝐿(𝑓) = 1
𝑝
𝐹(𝑝).(2.99)

∎

Theorem 2.29 

2.29 Преобразования Лапласа простейших функций

Преобразование Лапласа определено только для функций, обращающихся в ноль 

при 𝑡 < 0. Поэтому выписывая таблицу изображений, будем считать, что функции-

оригиналы обращаются в ноль на отрицательной полуоси.

1. 𝐿(1) = 1
𝑝 ;

Proof.

𝐿(1) = ∫
∞

0
𝑒−𝑝𝑡 ⋅ 1𝑑𝑡 = 𝑒−𝑝𝑡

−𝑝
|∞0 = 1

𝑝
. (2.100)

∎
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2. 𝐿(𝑒𝑎𝑡) = 1
𝑝−𝑎 ;

Proof.

𝐿(𝑒𝑎𝑡) = 𝐿(𝑒𝑎𝑡 ⋅ 1) = 1
𝑝 − 𝑎

. (2.101)

∎

3. 𝐿(sin 𝑎𝑡) = 𝑎
𝑝2+𝑎2 ;

Proof.

𝐿(sin 𝑎𝑡) = 𝐿( 1
2𝑖

(𝑒𝑖𝑎𝑡 − 𝑒−𝑖𝑎𝑡)) =

= 1
2𝑖

(𝐿(𝑎𝑖𝑎𝑡) − 𝐿(𝑒−𝑖𝑎𝑡)) =

= 1
2𝑖

( 1
𝑝 − 𝑖𝑎

− 1
𝑝 + 𝑎𝑖

) = 1
2𝑖

2𝑖𝑎
𝑝2 + 𝑎2 = 𝑎

𝑝2 + 𝑎2 .

(2.102)

∎

4. 𝐿(cos 𝑎𝑡) = 𝑝
𝑝2+𝑎2 ;

Proof.

𝐿(cos 𝑎𝑡) = 𝐿(1
2
(𝑒𝑖𝑎𝑡 + 𝑒−𝑖𝑎𝑡)) =

= 1
2
(𝐿(𝑒𝑖𝑎𝑡) + 𝐿(𝑒−𝑖𝑎𝑡)) =

= 1
2
( 1

𝑝 − 𝑖𝑎
+ 1

𝑝 + 𝑖𝑎
) = 1

2
2𝑝

𝑝2 + 𝑎2 = 𝑝
𝑝2 + 𝑎2 .

(2.103)

∎

5. 𝐿(𝑡𝑛) = 𝑛!
𝑝𝑛+1 .

Proof.

𝐿(𝑡𝑛) = 𝐿(𝑡𝑛 ⋅ 1) = (−1)𝑛 𝑑𝑛

𝑑𝑝𝑛
1
𝑝

= 𝑛!
𝑝𝑛+1 . (2.104)

∎
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