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I Onpenenenusa

Definition 1.1

1.1 InddepenunaarprHOe ypaBHEHUE

OOBIKHOBEHHBIM JIM(b(l)epeHLU/IaJIBHLIM YPaBHEHMEM IIEPBOTO ITOPAAKA HA3bIBAIOT

ypaBHeHUe B
F(z,y,y") = 0.

njin

- 22
- 22

(1.1)



Muddepennmanbuble ypaBHEHNA 1 Onpepenenns

HuddepeHnnanpHEIM ypaBHeHNEM Ha3bIBAETCS ypaBHEHNE, CBI3bIBalOlIlee He3aBUCUMYIO

[epeMeHHYI0 &, UCKOMYI0 pyHKuu y = y(x) u eé mpoussoxausie y', y’"’, ..., y(n).
Definition 1.2

1.2 Pemrenne pudPpepeHnnaaIbHOro ypaBHeHIs, o011iee penieHne

OyHKUMA (p - pellleHue YpaBHEHNS, eCIIU
¢ € C'(a,b);
F(z,p(z), o' (r)) =0 ma (a,b)

IpyrumMu cioBaMy, pelieHyeM YpaBHEHNS Ha3bIBAIOT INIANKYI0 PYHKIMIO (0, OTIpeNeIEéHHYIO

(1.2)

Ha uHTepBase (a, b), HoACcTaHOBKa KOTOPOJI BMECTO y 00pall[aeT ypaBHEHIEe B TOKIECTBO Ha
(a,b).
O61LIMM pelleHIeM ypaBHEHNUS Ha3bIBAIOT MHOKECTBO BCEX €0 PELLIeHMIL.

NI

Oyukuus y = p(x) aBnsercs pereHreM nuddepeHnNanbHOr0 ypaBHEeHIs, eCIIN eé

IIOACTaHOBKA B YPaBHEHIIE o6pamaeT €TI0 B TOXKIECTBO.

Definition 1.3

1.3 3amaua Komn

3amaueit Koy niny HauanbHON 3aaueil AJIsI HOpPMAJIBHOT'O YpaBHEHMS

y = f(z,y) (1.3)
HAa3bIBAIOT 3aaUy HAXOXKIEHUS ero PelIeH s, yIOBIETBOPSIOIIEr0 HAUaJIbHOMY YCIOBUIO
Y(7o) = Yo- (1.4)

Hapa q1cell (LUO, yo) IIpM 3TOM Ha3bIBAE€TCA HaUAJIbHBIMIUI NaHHBIMI.

Definition 1.4

1.4 YpaBHeHUe ¢ pasgeJsIIOIMIMUCS lepeMeHHbIMU

YpaBuenne B quddepennmanax suga
P(z)dz + Q(y)dy =0 (1.5)

Ha3bIBAaIOT YpaBHEHIEM C pa3feIE€HHBIMY II€pEMEHHBIMIL.
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Taxoe Ha3BaHNME MOTVBMPOBAHO TEM, UTO KaXKO€ €ro cjlaraeMoe 3aBYICUT TOJIBKO OT
OIHOII IEPEMEHHOIL.

YpaBHeHUE Buaa
p1(2)qy (y)dz + py(2)4s(y)dy = 0 (1.6)
Ha3bIBAIOT YpaBHEHIEM C Pa3HeITI0IIIMICS ITepeMeHHBIMA.
50051

Ecnu ypasuenue @(z,y,y’) = 0 ¢ moMowipio anreGpanyeckux npeoOpasoBaHMIl YAAeTCs
NPUBECTHU K BUILY

Y =g(z) - h(y) (L.7)
M, (z) My (y)dz + Ny (z)Ny(y)dy = 0, (1.8)

TO OHO HA3bIBAETCA YPABHEHMEM C pa3aeIIIOIINMIUCI IIEPEMEHHBIMIL.

Definition 1.5

1.5 OpHOpOomHass PyHKIMS

Oyukuus F(x,y) HasbiBaeTCs OQHOPOLHON (yHKUMEN CTENEHN (v, €CIIN IIPU BCEX

JOIYCTUMBIX t, T ¥ Y BEPHO PABEHCTBO
F(tz,ty) =t*F(z,y). (1.9)

[Ipumep oMHOPOIHBIX GYHKUMIL: T + Y + z (IIepBOIL CTeNeHN), z? + 3zy + o> (BTOpOIL
Vaty

z2+y?

crenenn), £ cos % (HyJeBoit cTemeHM), (cremenn —%),

Definition 1.6

1.6 OgHopopaHoe /1Y nepBoro nmopsAagka

Hycts P u Q - onHOpoaHble pyHKINU OJMHAKOBOI cTereHn. Torna ypaBHeHMe Buia
P(z,y)dz + Q(z,y)dy =0 (1.10)
HA3BIBAETCA OHOPOJHBIM yPaBHEHUEM.
nimn

HuddepeHnunanpHoe ypaBHEeHNE IIEPBOTO IOPSAKA HA3bIBAETCA OJHOPOIHBIM, €CII €T

MOJKHO IIPMBECTU K BUIOY:

v 1(2) o
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Definition 1.7

1.7 JImnerinoe /1Y mepBoro mopsgka

HuddepennunanpHoe ypaBHeHNe B

Yy =px)y+q(z), (1.12)
HAa3bIBAETCA J'II/IHCI7IHBIM ypaBHeHI/IeM r[epBoro nopa;u(a.

HasBaume nuHeitHOE MOTHUBIIPOBAHO TEM, UTO OHO COCTABJIEHO V13 MHOTOYJIEHOB nepBoﬁ

CTEIleHY 110 OTHOLIIEHNUIO K CUMBOJIAaM y 1 Y.
NI

JIuHeIHBIM ypaBHEHMEM IIEPBOro IIOpAaKa Ha3bIBaeTCd ypaBHeHIE BUA
y +p(x)y = q(x), (1.13)

rae p(x), g(x) — saganHble QYHKUMIL.

Definition 1.8

1.8 YpaBHeHune bepnynnn

YpaBHeHuUeM BepHyIn Ha3bIBalOT ypaBHEHME BUAA
y = p(z)y + q(z)y®, (1.14)
roe o € R\ {0,1}.
PaspgenuB naHHOE ypaBHEHME Ha Y%, HAXOAUM

v

(e

= p(z)y' ™ + q(x). (1.15)

<

Otcrofia BUHO, UTO 3aMeHa z = '~ CBOMUT ypaBHEHNeE K JIMHEHOMY.
NI

YpaBHeHUeM BepHyIN HasbIBaeTcs ypaBHEHNE BIAA

¥ +p(x)y =q(x)y*, rme a=const,a+0,a+#1 (1.16)

Definition 1.9

1.9 YpaBHeHue B TOaHBIX AudPepeHIManax

YpasueHue
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P(z,y)dz + Q(z,y)dy =0 (1.17)
Ha3bIBAIOT ypaBHEHMEM B TIONHBIX AnddepeHImanax, eCm CyIecTByeT Takast QyHKIUS U, 94TO
du = P(z,y)dz + Q(z,y)dy, (1.18)
TO ecTh Uy, = P,u, = Q.
nimn
MuddepenunanpbHoe ypaBHeHNE BUIA
M(z,y)dx + N(z,y)dz =0 (1.19)

Ha3bIBAETCA YPABHEHIIEM B ITOJITHBIX m/[q)q)epeﬂumaﬂax, €CJIN €0 JI€Bad YacCThb IIPENCTABIIAET

c006011 IoTHBLI AuddepeHan HeKoTopoit GyHKumM u (T, y):

Mdz + Ndy = du = @dm + %dy. (1.20)
oz dy

Ycnosue Toro, uro Mdx + Ndy npencrasnsger co6oit moaHbI anuddepenmmat:

%—J\j = %_z;r‘ (1.21)
Definition 1.10
1.10 Oco6oe pemrenne 1Y
Pewrenue y = ¢(z) nuddepeHmanbHOro ypaBHeHUI
®(x,y,y") =0 (1.22)

Ha3BIBAETCA OCOOBIM, €CIIN B KasKIOJl er0 TOUKe HapYIIIAeTCsS CBOMICTBO € JMHCTBEHHOCTH, TO
€CTh eCJIN uepe3 KakKAyIo ero TOUKY (I, Y) KpOMe 3TOTO pelleHNs IIPOXOJUT I APYroe
pelleHe, MMeIoLIee B TOUKe (X, o) Ty JKe KacaTeJbHYI0, YTO U pelleHne i = (&), Ho He
COBIIafalolee C HUM B CKOJIb YTOTHO MaJIOi OKPECTHOCTH (T, Y, )- ['paduk ocoboro perreHms
OynmeM Ha3bIBaTh 0COOOI MHTETPAJILHON KPMBOJI YPABHEHII.

njin

Pemenne ¢ Ha (a,b) ypasHenns y' = f(x,y) HaspiBaeTCs 0COOBIM, €CIIU IS IEOOOTI TOUKM

xy € (a,b) Haitgercs peleHye Y TOTO K€ ypaBHEHsI, TAKOE UTO
p(2o) = ¥(zo) (1.23)

IIPU 3TOM (p = 1) B JII000JI CKOJIb YTOTHO MaJIOJ OKPECTHOCTY TOUKM X).

BoJiee KpaTKO 9TO BBIPAKAIOT CIIOBAMIL: MHTETpaIbHAas KpuBas ypaBHeHus y' = f(z,y)
ABJILETCSI 0CO0OIL, €CNIM B KKIOI eé TOUKe HapyIIaeTcs eUHCTBEHHOCTD PelleHNs 3a8aun
Kormm.
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Definition 1.11

1.11 Y BeIcIIero mopsaagka, 3agauya Komm nia Hero

HuddepeHnnanpHbIM ypaBHeHMEM N-TO IOPSAKa Ha3bIBAIOT ypaBHEHIE BUIA
F(z,y,y,..,y™) =0. (1.24)
OyHKIUSA @ — pelleHNe ypaBHeHUs Ha (a, b), eciu

¢ € C™(a,b);

1.25
F(z,0(z),¢ (2),...,™(2)) =0 na (a,b). Gl

Kanounueckum ypaBHeHUeM OyoeM Ha3bIBaTh ypaBHEHUE
y™ = f(z,9,9, ...,y V), (1.26)

paspeléHHOe OTHOCUTEIBHO CTaplell IPOM3BOTHOI.

Sanaqeﬂ Ko JJIA KaHOHMUYECKOTO YPAaBHEHNS HA3bIBAIOT 3aJauy HAXOXKIAEHUA €Tr0

pemIenmd, yqOBIETBOPAIOIIETO HAYAIbHBIM yCIOBMIAM

¥(20) = Yo,y (%) = ¥y - y" V(zo) = v5" - (1.27)
Ha6op uncen (mo, Yo Yoy - yén71)> IIpY 5TOM Ha3bIBAIOT HAUAIBbHBIMI JAaHHBIMIL.
NI
O6rIKHOBeHHOE AUddepeHnNaNbHOe YPpaBHEHIE N-TO IOPSIAKa VIMEEeT BUL
@(w,y,y’, y”, ...,y(")) =0, (1.28)
VIV B PELLIEHHOM OTHOCUTEJIBHO CTapIIell IPOU3BOLHON y(”), BUL
y™ = f(x, vy Yy y("’l)). (1.29)

Besikast GyHKums y(2), MMeroLas HellpepbIBHbIE IPOM3BOAHbIE BILIOT A0 N-TO IIOPSAKA U
YOOBJIETBOPAIOIAs YPaBHEHIIO, Ha3bIBAETCA PEIIEHIEM STOr0 ypaBHEHN, a caMa 3afada
HaXOKIEeHN pelleHnil AuddepeHINaNIbHOTO ypaBHEHI Ha3bIBACTCA 3aJadert
VMHTeTpUpOBaHUA AUPPepeHIINATBHOTO yPaBHEHNA.

Definition 1.12

1.12 JInuneitnoe 1Y n-ro nopsaaxa. OmHOpOAHOE, HEOGHOPOAHOE

JIuneitapiM nuddepeHuanbHbIM ypaBHEHIEM MIOPSIIKA 7 HA3bIBAETCS ypaBHEHME BUIA
y™ +p, 1)y + o+ p ()Y + po(t)y = q(t), (1.30)

TOE Do, D1y -+ P11, 9 € C(a,b).
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Ecinu ¢ = 0 Ha (a, b), TOo ypaBHEHUE, TO €CTh

y™ +p, By Y + 4 py(8)Y + o (t)y = 0, (1.31)
HAa3bIBAETCA O,T_IHOPOI[HBIM, B HpOTI/IBHOM Cﬂy‘lae — HeOHHOpOHHBIM.
Iy

YpasHenue Buma
y™ + a;(z)y™ Y + .. +a, (@)Y +a,(2)y=0 (1.32)

Has3bIBAETCs JIVHETHBIM OJHOPONHEIM AV depeHIIaTbHbIM YPaBHEHNIEM N-TO IIOPSIOKA.

YpaBHeHUE BUIa
Y™ +ay @)y + a1 (@)Y F a,()y = f(2) (1.33)

Ha3bIBAETCS JIMHEIHBIM HEOMHOPOAHBIM A depeHINaIbHbIM YPaBHEHEM N-TO IOPSAKa.

Definition 1.13

1.13 JInHeliHass HE3aBUMCUMOCTD (PYHKITNIT

Definition 1.14

1.14 Onpepenunrenp BpoHckoro

Ompenenurenem Bporckoro (mmm BpoHCcKuanoM) GyHKIMIL Yy, Yo, .., Y, € C" Y (a, b)
Ha3bIBAIOT

wip=| MO (134

Definition 1.15

1.15 ®yHpamMeHTaIbHAs CUCTEMA pellleHI

dyHITaMeHTaIbHOM CHCTEMOJ PEIIeHNII CICTEMBI yPAaBHEHNI Ha3bIBAETCS COBOKYIIHOCTD
€€ N IMHENHO HEe3aBUCUMBbIX PEIlIeHNIA.

NI
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JIro60it HaGOp M3 N IMHEHO He3aBUCUMBIX pelleHuit Y, (x), Y, (), ..., y,, () ypaBHeHus
y™ + a;(z)y™ Y + ... +a, ;1 (2)y + a,(z)y = 0 HazBIBaeTCS ByHTAMEHTANBHOI CHCTEMO
PpElLIEHNIT 3TOTO YpaBHEHNA.

Definition 1.16

1.16 XapaKTepMCTUUYECKNI MHOTOUJIeH

MHorounen
p(A) = A" +a, A" T+ .. +a A +ag (1.35)

Ha3bIBAETCH XapaKTEPUCTMYECKIM MHOTOUJIEHOM YPaBHEHMS y(") = an_ly(”_l) + ... +ay+

agy = f(t), a ero KOpHM — XapaKTEPUCTUUECKMMI UMCIAMY TOTO K€ YPaBHEHSL.

Definition 1.17

1.17 Cucrema /1Y, pemreHne cucTeMbl

Cucrema nuddepeHIMaNbHBIX YpaBHEHNIT — 9T0 Habop auddepeHUMATbHBIX YPaBHEHNI],
pelaeMbIX COBMeCTHO. PelreHne cucreMsl — 3T0 HaG0p QYHKINIL, KOTOPBII YIOBIETBOPSIET
BCEM YpaBHEHIAM CUCTeMBL Takas ¢popMa 3almcy CUCTeMbl Ha3bIBaeTCs HOPMaIbHOI opMoit

Kormn:
W= fi= )
dx 1\ T Y1,Y25 -5 Y
(1.36)
d "
dy_:L‘ = fn<$, Y1:Y25 -+ yn)
PerrenneMm crctreMbl Ha3bIBA€TCS COBOKYITHOCTD 72 (PYHKIIUAIT
y, = ¥(z), i=1,2,..,n (1.37)

TaKWX, UTO TP IOJCTAHOBKE VX B YPAaBHEHNS CUCTEMBI 3TY YPaBHEHM 00pAIIAIOTCS B
TOKeCTBA OTHOCUTENBHO . [Ipu aToM QyHKIMM ), (Z) IpeaIonaraloTcs HelIpepbIBHO
nuddepeHIIPYEMBIMIU.

N

HopwmansHoit cuctemMoit quddepeHIManbHbIX ypaBHEHNIT IOPSAKA 12 Ha3bIBA€TCH CUCTEMA
YpaBHEHUII BUAA

j:l = fl(t’ $1,...,$n)
(1.38)
z, = f,(t,zq,...,x,)

Ecnu BBecTu B PacCMOTPEHNIE BEKTOPBI
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1 fi(t,r)
r=| .., f(tr)= , (1.39)

TO CHCTEMY MOKHO KOMITAKTHO 3aIICaTh B BUJE OJHOIO N-MEPHOTO YpaBHEHMs
7= f(t,r). (1.40)
Bekrop-dyHKIMS @ - perteHne cucteMsl Ha (a, b), ecan

p € C'((a,b) = R,);

) (1.41)
o(t) = f(t,¢(t)) ma (a,b).
Definition 1.18
1.18 JImHeiiHasA OogHOpPOAHAA M HEOJHOPOAHAA cuctema 1Y
JInuettHOM cucteMoit auddepeHIATHHBIX YPABHEHNUIT HA3bIBAIOT CUCTEMY BIIA
7= P(t)r + q(t), (1.42)
rae P € M,,(C(a,b)), g € C((a,b) — R™).
Ecnu ¢ = 0 Ha (a, b), To cucrema, T0 ecTb
7= P(t)r, (1.43)

Ha3bIBaeTCd OQHOPOOHOM, B IIPOTVMBHOM CJIy4Yae — HEOTHOPOIHOIL.

Definition 1.19

1.19 ®yHKIMA OPUTMHAII

DyHKIUE-OPUTMHATIOM Ha3bIBA€TCSI KOMIUIEKCHO3HauHas QyHKuus f(t) BeliecTBeHHO

IIepeMEHHOI1 ¢, yAOBJIETBOPAIOIIAd CIeAYIOIINM YCIOBIAM:

« f(t)=0,ecmut < 0;
+ f(t) uaTerpupyema Ha JTF060M KOHEUHOM MHTEpPBAJIe OCH t;
« ¢ BospactaHmeM t Moxysb pyHKuu f(t) pacter He GBICTpee HEKOTOPOII MIOKA3ATEIBHO

HKITUI, b CyIIIeCTB YIICIT n Sy > e, uTo VI BCeX ¢ MMeeM:
K TO ecTh cyiecTByioT unciaa M > 0 u sy > 0 taxne, uro cex t uMmee

| ()] < Me®ot. (1.44)

Definition 1.20

1.20 IIpeo6pa3zoBanme Jlamraca

10
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[Ipeo6pasosanuem Jlamnaca L pyukuuu-opurunana f(t), sagansoi Ha [0, 00),
HasbIBaeTCA MpeobpasoBaHue BUMIA:

Lo =Fo) = [ " f(t)ertdr, (1.45)
0

rae o6pas pyukyu f 6ymem o6osHauats 3a F'(p). @ynkumio F(p) HaspiBaoT M300paskeHIEM

¢yukunu-opurnnana f(t).

11



Muddepennmanbuble ypaBHEHNA 2 Teopemsl

II Teopemsr

Theorem 2.1

2.1 O cymrectBoBaHMM perueHud 1Y

YpaBuenne y' = f(x) nmeer 6eCKOHEUHO MHOTO PELIEHNII, IOCKOJIBKY B GOPMYILy Y =

[ f(z)dz + C Bxopur npoussonpHas nocrosaHas C.

[liist Toro, YTOGHI MOJMYUYUTh eAMHCTBEHHOE pellleHue ypasHenus y' = f(x), mopcraBum B
HaYaJIbHOE YCJIOBUE, TO eCTh IToTpedyeM, YToOR! GYHKIMS y MIPUHNMAJIA 3aJaHHOe 3HAaUeHNe Y,

opn r = Iy:
Y |1:=z0 = Yo (21)

NeiictBuTenbHO, ycTh GyHKIuA f () HenpepbIBHA Ha HEKOTOPOM MHTepBae (a,b) n Touka
zy € (a,b). 3amenss B popmyne y = [ f(z)dz + C HeonpenereHHBIIT NHTErpaT

OHpe)IeJIeHHI)IM C HepeMeHHLIM BerHMM HpeJIEJIOM X "I HKHIUIM HpeHeJIOM .7)0, HOHY‘II/IM:
T
y— / f(®)dt+ C. (2.2)
Zg

YmoBieTBOPUM HauaIbHOMY ycIOBMIO. [Ipy £ = x; mHTerpas obparaercs B HyJIb M MBI
MOy YMIM:

C =y, (2.3)

Takum o6pasom, ypasHenre y' = f(z) npu HauanpHOM yenoBun VpasHenne (2.1) umeer
€IVHCTBEHHOE pellIeHIe:

v=[ " F(0)dt + v, (2.4)

OTMeTHM, YTO 3TO pellleHNue eNUHCTBEHHO Ha BCeM MHTepBale (a, b).

Theorem 2.2

2.2 Pemrenne ogHOpomHOTO AU depeHINATBHOTO YpaBHEHISA

Caenem ypaBHeHMe YpasHenye (2.11) K ypaBHEHUIO C pas3aessIOIIMIICS IIepeMEHHBIMI.

HJI}I 9TOr0 CAeJIaeM 3aMEHY:

S =usy=uzr. (2.5)

SEES

CieqoBartebHO,

12
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y =u -r+u, dy=udzr-+ zdu. (2.6)

[Moxgcrasum y u y’ B ypaBHeHme Ypasuenue (2.11):

uj.x—i_u:f(u)@u,'w:ﬂu)—u@%w:f@)—u@)
(2.7)

=t LI _Js

©m_ x <i)/f(u)_u_1n|9’3|‘i‘11101<i>ac_e Flu)u

Kak ompenenuts, UTo ypaBHEHIE€ OXHOPOTHOE?
C mmoMoIIbI0 METOA Pa3MePHOCTEIL.

[punuiiem ¢pyHKINN Yy, IepeMeHHOM T 1 UX AuddepeHnanaM HEeKOTOphIe pa3MepHOCTI.
Hampumep, MeTphI:

x~M, Yy~™M, dr~wm, dy~M. (2.8)
[IpousBomHas y’ = Z—g ~ 1 - GespasmepHas BeIMUNHA.

[l TpaHCIeHIeHTHBIX QyHKINIT (TO ecTh QyHKIINIT, He ABIAIOIINXCS alredpanieCcKIMIL:
sin x, cos z, tg x, ctg x, e*, a®, In x, arcsin x, arccos x, arctan x, arccot £) B KauecTBe apryMeHTa

Yy
DOJDKHA CTOSTH Oe3pasMepHasi BeJINUNHA: €= , tg(%) U TaK Jajee.

YpaBHeHMe Oymer 0OJHOPOSHBIM, €CIIM B HEM CKIIABIBAIOTCS BEJIMUMHBI OTHOIT

pasMepHOCTIL.
Hanpumep:
(22 + zy)y’ = zv/22 — y? + 2y + 92, .
2.9
(M 4+M-M)-1=m VM2 —M2+ MM+ M2
CiieoBaTeNIbHO, ypaBHEHIE OJHOPOLHOE.
Theorem 2.3
2.3 O pemreHMM JMHEHHOTO OJHOPOJHOTO YpaBHEeHIA
PaccMoTpuM cHadasa COOTBETCTBYIOIIE OJHOPOAHOe ypaBHeHue pu ¢(z) = 0:
7 +p(z)g=0. (2.10)
[lepeMeHHBIE 3[1€Ch Pa3IENAIOTCH:
dy d
d—y +p(x)y=0 |- Tx < 3mech MBI npeqmosaraeM, uro g # 0. (2.11)
€ Yy
di
o | p@)ds =0 | = — /p(x)dx & §=C. e Ir@is (2.12)
)

13
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3nmech Ha mocTossHHY0 C' MBI He HaKJIabIBaeM HIUKAKUX OrpaHmueHuit. [lesaeTcs 310 AJIs TOTO,
uToOs! perrerue §J = 0 Bouwro B orBet (Ypasuenue (2.12)). 3aMeHUM HeoIlpexeIe HHbIT

MHTErpaJl ONpeesIeHHbIM C IEPEMEHHBIM BEPXHUM IIPEIETOM:
x
~ = p(t)dx
§=C. ¢ P (2.13)
Ecin ects HauanwHOE YCIIOBIIE:

g |z=a:0 = yOa (214)

10 C' = y,. [ns unTerpupoBanus ypasaenus y’ + p(x)y = ¢(z) Bocronb3yemcst MeTogoM
BapMAaIMM POU3BOJIbHBIX TIOCTOSHHBIX.

Bynmem uckaTh pelieHne 3TOro ypaBHeHUs B CIeLYIOIIeM BUe:
y=u e JP@dr (2.15)
cuyTas U He IOCTOSHHOI, a HEKOTOpoll ¢pyHKumelt or . [uddepeHunpyst, HaXOTUM
y =u e JP@dE Ly o= [Pz (_p(g)). (2.16)
IloncraBus y' B ypaBuenue y' + p(x)y = ¢q(z), momyumm:
u e JP@dE oy o= [P@dr (_p(z)) + p(z)u - e PO = ¢(z) &

s e JP@dE — g(3) & du = g(x) - /PP gy o

(2.17)
S u= /q(x) celpl@)ds gy 4 O,
IToxcraBias u B popmyiry Ypasmerne (2.15), MOIYUMM:
y=e Jp@)dz. (/ q(z) - e/ Pz gy 4 C’). (2.18)

3aMeHUM HEOIIPEACIIEHHDBIC THTETPAJIBI HAa THTETPAJIBI C IIEPEMEHHBIMI BEPXHVIM IIPEANEIIOM:

y(z) = e—fwzop(u)du ‘ (/ ) BI:O p(u)du dv + C) . (2.19)

0

J1st scHOCTY MBI 0003HAUaeM IepeMeHHble MHTeTPUPOBAHNS PasINUHbIMI OyKBaAaMI U 1 U,

OTJIMYHBIMU OT 6YKBBI x.

Ecinu 3agaHo HauanpHOe ycioBue: Y | z=z, = Yo, T0 C' =y, u dopmyina YpasHeHme (2.19)
IpUHIMAaeT BUI:

y(@) = & de P (/ q(v)'ef;)op(u)du.dv_i_yo). 05

0

z T x v
y(z) = go - € TP g g I PO / g(v) - el P gy, (2.21)
- o
Yy
Y

Toectb Yy =4 + Y.

14
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Theorem 2.4

2.4 Merop Jlarpamxka (Bapuanuy IIpon3BOJIbHON IIOCTOSHHOI)

PaccmoTpuM ypaBHeH1E BTOPOTO IOpAIKa:

Y +ay(2)y +ay(z)y = f(2). (2.22)
ITycTs oOIItee pelrreHe COOTBETCTBYIOIIET0 OQHOPOSHOTO YPaBHEHN IMEET BUL:
g = Ciy; + Cyys, (2.23)

rae Y,Ys — JIMHEITHO He3aBUICUIMbIE pemennda OqHOPOOHOI'O YPaBHEHNA, Cl? 02 -

IIPOM3BOJIPHBIE IIOCTOAHHBIE.

Bynem uckars uactHoe pemterue JIHIAY (Vpasuerne (2.22)) B cenyroleM BIUIe:
Y = uy (2)y; + ug()ys. (2.24)
3mech uq (z), uy () — HEKOTOpBIE PyHKIUNU, KOTOPBIE HAM HY>KHO HAIITH.

OrMmerum cxoncTBO dopMy Ypasuenue (2.23) u Ypasuenue (2.24). MbI Bappupyem
npousBoisbHble noctosHHble C;, Cy, B popmyite Ypasuenie (2.23) 1 moTy4aeM BMECTO HUX

HEKOTOpbIe QYHKLIMNI U, (X)), Uy ().
Haiimem npoussonusie Y, Y” u mopcraBum ux B ypaBHeHue Ypasuene (2.22).
Y’ =ujy; +ugyy +uys + ugys. (2.25)

Tak kKak MBI JIIEM HaCTHOE PEILIEHVIE YPABHEHNIE, HAJIOXKVIM Ha d)YHKLU/H/I Uqp, Uy

AOIIOTHUTEIIBHOE OIrPaHNUEHNIE:

w1y +uzys = 0. (2.26)
Torpma Y/ mpumer Bup:
Y' = uqy; + uyys. (2.27)
CoOTBETCTBEHHO,
Y” = uyyy +uyyy +usys + ugys . (2.28)

IMoncrasum Y, Y’ Y” B ucxongHoe ypaBaenue Vpasrenue (2.22):
w1yl + uryl + Usls + Ugys + aruiy) + agUaYs + axun Yy + agusyy = f(z) &
z

S uy Y] Fagy) +axy; +uy Yy +agys +asys +uiy) +ubys = f(z) & (2.29)

=0(y, — pewenne JOY) =0(y,— pewenue JJOY)
< uiyy +ugyy = f(a).

YunuTeiBasg BBeIeHHBIE paHee OrpaHMueHys Y pasHene (2.26), mojlyyaeM CUCTEMY ypaBHEHIIA

st QYHKLII u], uh:

uy; +usys =0
2.30
{Uiyi +ulyh = f(z). (230)
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Omnpenennrens BpoHCKOro He paBeH HYJIIO HII B OJHOM TOUYKE B CITY JIMHEITHOI

He3aBYICUMOCTIL PeIIeHNIT Y, , Ys.

CremoBaTenbHO, cucTeMa Ypasuenue (2.30) paspelnma eqMHCTBEHHBIM 00pa3oM U Ipu

J100071 mpaBoit uactu. IycTh eé penieHnss UMEIOT BU:

up = ¢y (2)
) (2.31)

Torpa pyHKIUYU U, (T), Uy (T) HAXOAATCI MHTETPUPOBAHMEM:

S

2) PaccMoTpmM ypaBHEHIE N-TO MOPAIKA:
y™ +a;(z)y™ Y + .+ a,(2)y = f(x). (2.33)
3mech Bce IMOCTPOEHNSI aHAJIOTIHEI.
Pemtenne JIOY nmmeer Bun:
§=Cuy +Cyy,+ ...+ Cy,. (2.34)
YacrtrHoe peurenne JIHAY umniem B Bune:
Y = uy(2)y; () + ug()ys(z) + ... +u,(z)y, (). (2.35)

Cremyst OIMCAHHO HPOLEAYPE, IOTyUaeM CIeTYIOIIYIO0 CUCTEMY YPAaBHEHWI i1 (yHKLIIT
’ ’ /.
U, Woy eey Uyt

iy, +usys + ... +uny, =0
wjyy Fubyb+ ...+ uly, =0

......... OHE)
gt gy gl = f(@).
Omnpepennresb 9TON CUCTEMBI — 3TO OIIpeAeINTeNb BpoHCKoro:
Y1 Y2 - Un
v Yo o Un # 0 HU B OXHOJ TOUKe. (2.37)
0

CrnenoBaTenbHo, cucteMa Ypasrenie (2.36) paspelnmMa eqMHCTBEHHBIM 00pasoM U IIpI JIF060it
mpaBoii yacTu. Pelnast eé, HAXOMUM U, U, ..., u,,. PyHKIMYU Uy (T), Uy (T), ..., u,, (*) HaxOOATCS
MHTETPUPOBAHUEM.

Theorem 2.5

2.5 Metop bepnynnn
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HMuddepenunaapHble ypaBHEHUS

HaHOMHI/IM, YUTO YpaBHEHVIEM BepHYJI.T[I/I Ha3bIBA€TCA YPAaBHCHIIE BUIAA

v +p(x)y =q(x)y*, rme a=conts, a#0, a+* 1.

Ero pemenne MO>XHO IIOTYYUTh ABYMS CIIOCOOAMIL.
I. CBenenue k MMHETHOMY ypaBHEHMUIO.

Paspennm obe uactu ypaBHeHUs Ypasuere (2.38) Ha y®:

y _

e +p(z)y'~* = q(x).

CrmenaeM sameny: z = y' =%,
CoOTBETCTBEHHO,

’ Y <

Z=(0-a)-y "y

HOJlCTaHOBI/IM Z N Z, B JICXOHOE YPaBHEHIIE:

— az’ +p(z)z = q(z).

Mg nomyunnn IMHENHOe ypaBHEHNE.
II. (cBemeHMe K ypaBHEHMIO C pa3ielITIoIIIMIICS IlepeMeHHbBIMI)
Crhenaem 3aMeHy IlepeMEHHOII KaK B JIMHEITHOM ypaBHEHIIL:
y=u e JP@dr,
Torma
y =u e JP@dr g o= [p@)dr (g (),

[Moxpcrasum y u y’ B ypaBHeHue Ypasrenue (2.38):

u/ . e_fp(z)dz _|_ u - e_fp(z)dz . (_p(x)) +p(x)u . 6—fp(z)dm =

= q(x)ua o e—afp(m)dz 2N
o - e—fp(z)da: — Q(.’E)Ua . e—afp(a:)dz =

& du = q(z)u - e(l=a) [p(@)dz . g

& — = q(m) ° e(l_a)fp(z)dz 3 dm

Mg1 IIOJIYUNJINI YPAaBHEHME C PA3ACIIAIOIIMIICA IIEPEMEHHBIMIL.

Theorem 2.6

2.6 O mosHoM guddepenmmaie
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Ecnu Mdx + Ndy npencraBusger co60it mOTHbIL auddepeHIa, T0O BOCCTAHOBUTD

dyHKIIO (2, Y) C TOUHOCTHIO O KOHCTAHTEI II0 €€ N3BeCTHOMY II0JIHOMY muddepeHIyanty
du = M(z,y)dz + N(z,y)dy (2.45)

MOZKHO C IIOMOIIIBIO Kp]/IBOJII/IHef;IHOI‘O JTHTETrpaja. A mMeHHO 3a(bMKcmpyeM HEKOTOPYIO TOUKY

(g, Yo)- Torma KpUBOIMHEHBI MHTETPAI
u(ey) = [ (M(@,9)do+ N(z,y)dy) (2.46)
i

I10 IPOM3BOJIBHOI KPUBOIL OT TOUKM (X, Y ) O TEKyLLel TOUKM (X, y) AACT 3HAUEHME
byukuuy u(x, y), nuddepeHiman Kotopoit umeer Bup YpasHenne (2.45). IsMeHeHMEe
HAYAJIBHOI TOUKM (I, Yy) IPUBOAKUT K HOOABIEHNUIO IIOCTOSHHOM (QYHKIMS U (T, Y) HAXOLUTCS
C TOUHOCTBIO KO KOHCTAHTBI).

dopmyia Vpasuenie (2.46) mpuHUMaeT 6osiee YAOOHBI BUJ, eCIV KpUBYI0 L BHIOpaTh B
BIIIE JJOMaHOM, IIoKasaHHoi Ha Puc. 2.1.

YN

Puc. 2.1. Kpuas naTerpupoBanms L.
IIpn TaxoMm BeIGOpe L mmeem:
z y
u(e,y) = [ M)z + [ Ny (2.47)
To Yo
COOTBeTCTBEHHO, pellleHNe yPaBHeHNS:

u(z,y) =C. (2.48)

18



Muddepennmanbuble ypaBHEHUST 2 Teopemsl
Theorem 2.7

2.7 O06 UHTerpMUpyroIIeM MHOYKIITEIE

Hamomumm BUI MHTETPUPYIOIIETO0 MHOXKITEIIT:
du = pMdz + pNdy. (2.49)
Hanniem ycioBue Toro, 4To du SBISeTCs IIOIHBIM DU depeHIaIoM:

5o M) = 5 (u)

o oM  Ou ON
2 (21 0)
ox Ay oy oz )" (2.50)
1 Ou 1 oup OM ON
N.— .2 _ M.-.22_ZZ =Z7
< u Oy U Oy oy ox <
Slnp
oy
Olnp Olny OM ON
N. — M- - -
e ox oy oy Ox

Taknum o6pa3oM, I HAXOKAEHMS MHETPUPYIOLIET0 MHOKUTENS MBI IIOJyUNM YpaBHEHIE B
. 0,
YACTHBIX [IPOU3BOAHBIX. IHOTHA yHaeTcs Haiitu ero peutenne. Ecmu p = p(x), To 8—’; =0n

ypaBHeHue YpasHenue (2.50) mpuMeT BUL:

oM ON

dln,u oy oz
— . 2.51
dx N ( )

Ecny npaBast uacTh ypaBHeHUs He 3aBUICUT OT Y, TO In (4 HAXOOUTCS MHTETPUPOBAHIIEM.

Theorem 2.8

2.8 O cymiectBoBaHMM perneHusd /1Y BbICHIIX NOPATKOB

Iyctes byHKIMS f(x, Y, y', ey y("_l)) OJHO3HAUHAa, HEIIPEPbIBHA I MIMEET HEIIPpEPhIBHBIE
_ n—1
YaCTHBIE IIPOU3BOIHEIE II0 ¥, y', ey y(" 1) IIpM 3HAUEHUIX apryMeHTOB | X, Y, y('), eny y(() )>
1 BCexX 3HA4YEHMIX, JOCTATOYHO OIM3KUX K HuM. Torga ypaBHEHUE y(") =
f(x, Y, y', y”, ey y(nfl)) MMeeT eqUHCTBEHHOE pPellleHNe, YIOBIETBOPLIOIee HauaJlbHbIM
Ylo—zy =Yo
y/ ‘z:mo :y6
YCIIOBUAM

_ n—1
YD [ =y Y.

Theorem 2.9
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2.9 3ameHBI JIRIG: ypaBHeHI/IﬁI, AOIIYCKAIOIINUX ITOHVLKEHIE ITOPpAdKaA

1. Vpasuenus suma y'™) = f(x).
Vpasuenue 3™ = f(z) pelraercs ¢ MOMOIIBIO N-KPATHOTO MHTEIPUPOBAHIIL.
2. VpaBuenus supa O (x, yB) k1) (n) = 0,

3mecs ypaBHeHMe He COOEPKUT QyHKUNM Y U €€ HECKOJIBKIX IT0CIeX0BaTeIbHBIX
(k=1)

npousBoaHbIX y', Y, ..., Y .
Crhemnaem 3aMeHY:
2(z) = y®. (2.52)
Torpa MopsANOK ypaBHEHUS IIOHU3UTCA Ha k eIMHNLL:
®(z,2,7, ..., z("_k)) = 0. (2.53)
Eciiu MbI HatiieM OGOV MHTETPaJl TOTO MOCIEAHEr0 YPaBHEHS
z=p(z,C,Cy,....C,_1), (2.54)
TO Y OTIPEEIUTCS U3 YPABHEHNS:
y®) = o(z,Cp, Cy, ..., C ). (2.55)
3. YpaBHeHns Buga @(y, v,y y(”)) = 0.
3mech ypaBHEHIE He COIEPKUT HE3ABUCUMOIL ITEPEMEHHOI .
[IpumeM y 3a He3aBUCUMYIO IIEPEMEHHYIO I CIeJIaeM 3aMeHY:
¥ =p(y). (2.56)

9TUM MbI IOHU3NM IOPANOK ypaBHeHus Ha 1. B orBere monyunm pyskuo z = z(y).
HaitmeMm, kak ImpeoOpasyloTcs cTapiiye IMpOoM3BOgHbIE IIPY TAKOI 3aMeHe.

Y d | dy d dp dy dp
=—| Z=Z | == =— .= =p-—. 2.57
dr | dx dx (p(y)) dy dz 2 dy ( )
P P

w_ 4, _d dp\ _ dp dp d (dp\ _

(2.58)
dp\® d?
_p (_P) L2 P

dy dy?
4. VpaBHeHNs BUOa %@(w, vy, y("_l)) =0.

3mech JeBas YacTh YpaBHEHNS IIPeCTaBIIeT COOOI IOIHYI0 IIPOM3BOIHYIO IIO .
IIponHTerprpoBaB ypaBHeHUEe, MBI IIOHU3MM €TI0 IIOPSIOK Ha 1.

5. YpaBHeHUd BuAa @(:{:, vy, .., y(”)) = 0, rme ® - omHOpOOHAS QYHKIMS OTHOCUTEIHHO

Y,y sy y™.
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®(z,y,y ..., y(")) Ha3bIBAETCS OMHOPOIHO QYHKIMEN k-TO TIOPAIKA OTHOCUTEIHHO
IIepeMeHHBIX ¥, 1, ..., 4""), eciu oHa yIOBIETBOpSIET CIIeXYIOIIEMY CBOICTBY:
@(w,ty,ty’, ...,ty(")) =tk. @(m,y,y’, cey y(")). (2.59)

IIpu y # 0 cxenaeM 3aMeHy IepeMeHHBIX:

/7
=L (2.60)
y
Torma npomsBOgHbIE MPEOOPASYIOTCS 110 CIEXYIOLIEMY IIPABIILY:
y = zy,
(2.61)

y// — Z/y+zy/ — z/y+z2y‘

U rak manee. Takum o6pa3oM, MOpAROK ypaBHeHUsa moHusntced Ha 1. Pynkunio y = 0 crengyer
PaccMOTPETE OTAENIBHO.

Theorem 2.10

2.10 CBoricTBa pelleHII JMHEITHOro ogHopogHoro Y

Theorem 2.11

2.11 Heo6xomgmumoe ycI0BME JIMHEITHOV 3aBMCHMMOCTH PelIeHNIt

Theorem 2.12

2.12 JIocTaToOuHOe ycCJIOBHeE JMHEITHOM 3aBUCIIMOCTH pelleHNUN

Theorem 2.13

2.13 O 6a3suce MPOCTpaHCTBA PelIeHUIT

Theorem 2.14

2.14 OOuxee penreHNe JMHEITHOro HeogHOpoxHOTO /1Y
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Theorem 2.15

2.15 IIpmHIIII CyIe pIIo3NIIII

JToxaxkuTe, uTO eciu p; — peltenune cucreMmst i = P(t)r + ¢, (t), ¢, — pelenne cucreMsr
7= P(t)r + qy(t), T0 91 + Y5 — pewrenue cucremsl i = P(t)r 4+ ¢, (t) + g5 (t).

Theorem 2.16

2.16 MeTop Bapuanuy IpOoN3BOJIbHBIX IOCTOSAHHBIX

Theorem 2.17

2.17 O ®CP pnsa pa3IMUHBIX BellleCTBEHHbIX KOPHe

XapaKTEePUCTUUIECKOTIO MHOTOUIECHA

Theorem 2.18

2.18 O ®CP pxa KpaTHBIX BellleCTBEHHBIX KOPHeI

XapaKTEeEPMCTUIECKOIO MHOTOUWIECHA

Theorem 2.19

2.19 JInHeltHOeE OTHOPOJTHOE oy BTOPOroO IOPAAKA C IIOCTOSTHHBIMNI

K03 pummenTamMmn

Theorem 2.20

2.20 MeTtop HeonpeneeHHBIX K03 PUIeHTOB
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Theorem 2.21

2.21 MeTop MCKIIOYEeHNA NI pemieHns cucrembl Y

MeTOII JICKIIIOUEHVISI aHAJIOTTYEH COOTBETCTBYIOILIEMY anre6pamquKOMy MeETonay.

Ecnn ogHO 13 ypaBHEHUII CHCTEMBI ITO3BOJIET BHIPA3UTh OMHY U3 HEM3BECTHBIX (PyHKIIMIL
uepes ApyTHe, TO CAeIaeM 3TO I ITOACTAaBMM JaHHOE BBIpa)KeHIe B OCTaJIbHbIEe YpaBHEeHMA. MBI
nonyunm cucremy us (n — 1)-ro ypasuenns ¢ (n — 1)-oit HensBecTHOI PpyHKUMer. OnHAKO,
MOpAOOK ypaBHeHMII Bo3pacTeT. [loBTopsieM 3Ty ImpolleAypy A0 TeX II0p, II0Ka He MpUAEeM K
OJJHOMY YpaBHEHMIO 11-TO IopAfKa. Pelraem sTo ypaBHeHIe I Yepes ero pellleHle BbIpakaeM
OCTaJIbHBIE MICKOMBIE (PYHKITUIL.

IIponnnrocTpupyeM 3TOT METON Ha IIPMMeEpPE CUCTEMBI IBYX YPaBHEHIIL:

d
%zayl—l—byz—l—f(w)

dy,

(2.62)
az cyy +dy, + g(x).

3necs a, b, ¢, d — nocrossuuble K0apduuumentsr, a f(z) u g(x) — 3aganuble PyHKUMN. Y, () U

Yo (x) — MckoMBIE PyHKIUN.

BrIpasuM y, 13 IIepBOTro ypaBHEHMS CUCTeMBI Y pasrenne (2.62):

w=i (T rm) 269

ITomcTaBUM BO BTOpOE YpaBHEHME CUCTEMBI Y pasienie (2.62) BMECTO Y, IPaByIo YacThb

Ypagsrenue (2.63), molyuaeM ypaBHEHIE BTOPOTO IOPSKA OTHOCUTENBHO Y (T ):

A%y | pin

— + B=L + Cy, + P(2) =0, (2.64)

rae A, B, C' - HeKOTOpBIe IIOCTOSTHHBIE.

Pewnas ypaBHenue Vpaeuenue (2.64), HaxoguM y; = y; (z). [logcraBum HaiineHHOE

BBIpa)KE€HME I Y U % B Ypasuenue (2.63), HAAEM Yy.

Theorem 2.22

2.22 MeTop Jiiepa AJid pellleHIsA OGHOPOSHBIX JMHEIMHBIX cucteM [{Y
IPU IPOCTHIX COOCTBEHHBIX UMCIIAX

MatpuuHBIiI MeTO MPUMEHNM TOJIBKO IS JIMHETHBIX OTHOPOJHBIX CUCTEM yPaBHEHMII C
IIOCTOSIHHBIMY K03 duiimeHTamMu:
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Y) = a11Y; +a19Ys + .- + a1y,
Y3 = A91Y; + oo¥s + ... + A9, Y, (2.65)

y’;L =0,1Y + An2Y2 + <Oy Yn -

I7ie a;; — HEKOTOpbIe IIOCTOSHHBIE KO3(pUIMEHTBI.

Cucrema ypaBHeHMi1 YpasHene (2.65) MOXeT ObITh 3aIliICaHa B MATPUMYHOM BUIE:

Y’ =AY, (2.66)
e BBeJEHbI CIIeAyIoIe 0003HAUeHIS:
Yy Y1
yl T e G y}
Y=|"2], A=]: ~ |, Y=/["2] (2.67)
y an1 - Qpp y'/
n n
Marpura-cronberr
Y = 0y, 0y, 60y, (2.68)

Has3bIBAeTCs YACTHBIM pellleHIeM MAaTPUUYHOTO ypaBHeHus YpasHenue (2.66) Ha MHTepBaje

(a,b), eciut ee moxcTaHOBKA B ypaBHEHIE o0palljaeT ero B TOKAECTBO [ist II00bIX T € (a, b).

CucreMa n 4aCTHBIX pellIeHNI YpaBHeHMs Y pasHeHe (2.66)

1 n
vy (2) 0" (@)
(2) (n)
Yiz)=|¥% @] . Y@=|% @ (2.69)
() yn (z)
HasbIBaeTCs QpyHAAMEeHTAIbHOI Ha uHTepBate (a,b), ecnu dyuxkuun Y (), ......, Y ()
JIMHEHO He3aBUCUMBIL.
JluHeitHas He3aBUCUMOCTD pelteHuit Y (), ...... , Y (z) ypaBHenus Vpasuenne (2.66)
9KBIBAJIEHTHA TOMY, UTO OIpeeIUTeNb
1 2 n
w (@) 11 @) - (@)
1 2
v (@) v (@) - 95" () + 0Vz € (a,b) (2.70)
W(2) 42 (@) - (@)
Bes nokasarenbcTBa.
3amernm, uro BepxHme nHmekcs (1), (2), ...... , (n) — 210 HOMep uacTHOrO pelreHus (a He

MIOPSATOK IIPOM3BOTHOI).

O6b1ee perreHne MaTpuuaHOro auddepeHIMAIBHOrO ypaBHeHUA Y papHene (2.66) ecTh
JMHeTHAS KOMOVHAIMS QYHIAMEHTAIBHON CUCTEMBI PELIEHNIT C IPOU3BOIBHBIMU
koapduimenramu Cj, G, ...... C,:

n*

Y(z) =C Y (z) + CYy(x) + ... +C.Y, (x). (2.71)
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B 0OBIYHOI 3aIIMICK 9TO JAET pellleHNe CUCTeMBI Y pasrHenue (2.65):

1 (z) = Oyt (@) + G (@) + oo + G (2)
(2.72)

Un(2) = Qo (2) + Gy (@) + coooeo + G (2)

Proof. [ns toro, uTo6GBI IIPOBEPUTH, UTO YpasHeHue (2.71) ecTh 00IIee pEIIEHNIEe, HYKHO

yOenuUThCsA B TOM, UTO IJIS JIFOOBIX HAUAIbHBIX YCIOBUI Y (Z(), Yo (Zg), - ..o s Un (To) MOKHO
Haiitu 3Hauenns C, G, ...... , C,, Taknme, 4TO pelieHne Ypasrenne (2.71) 6ygeT um
yXOBJIETBOPST:

Y1 (z9) = Cyyt” (@) + coovee + Cot™ ()

............ (2.73)
Yn(To) = 012/%1)(330) + o +C, %n) (7).

Cucrema Ypasuenue (2.73) — 9T0 HeOTHOPOIHAs JIMHEHAs CUCTeMa aoTebpanuecKux
ypaBHenuit oTHocuteasHo Cy, Oy, ...... , C,,. E€ onpenennTess OTiIMUYeH OT HYJIS IIPY JII060M
x (popmyia Ypasuene (2.70)), mosToMy cuctema Ypasuerue (2.73) OZHO3HAUHO

paspelunma npu J6bIX Y1 (Lg), «.-. s Yy, (Tg), UTO U JOKA3BIBAET TEOPEMY.

B cooTBeTCTBUM C TEOpEMOIL, M1 PelIeHNsI CUCTeMBI Y pasHeH e (2.65) HaM TpebyeTcs
HaiTu QyHIAMEHTAIBHYIO CICTEMY PeLleHniT ypaBHeHMs Y pasuenue (2.66). Bymem mckartb

peLIEeHNd B CIIEAYIOIIEM BULIE:

3!
Y(z)= é? e, L EeR (2.74)
€n
IlopgcraBum YpasHuenne (2.74) B YpaBuenue (2.66):
& &
Pde = Al i e (2.75)
& €n
Coxkparras Ha e, IPUXOIUM K alre6panueckoMy MaTPUUHOMY ypPaBHEHIIO:
31
AX =)2X, r1me X=|:
¢, (2.76)

< (A-INX =0.

MEeI mosyunmin 3agady o COGCTBEHHBIX BEKTOPAxX 1 COOCTBEHHBIX 3HAUEHMAX MATPUIBI A.
YcnoBue cyIiecTBOBaHMS HETPUBIAIBHOTO pPellIeHNs ypaBHeHNs Y pasHene (2.76) TaKOBO:

det(A — AI) = 0. (2.77)
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Kopuu \; aToro anre6panuecKoro ypaBHeHIs 1-OIi CTEIIEHN — 3TO COOCTBeHHBbIE 3HAUeHN
MaTpuisl A, a HeTpUBUANbHbIE pellleHNsl ypaBHeHus Y pasHerye (2.76), COOTBETCTBYIOIIE A =

A; — 9TO COOCTBEHHBIE BEKTOPHL.

[TomcTaHOBKA COOCTBEHHOTO BEKTOPA I COOCTBEHHOTO 3HAUEHMS B GOPMYITY
Ypasuenue (2.74) gact HaM pelueHye Y () MaTpUYHOro ypaBHeHus Ypasuenue (2.66) (mim
cucremsl Ypasuenue (2.65)). Takum 00pa3om, IMHENHO HE3ABUCUMBbIE COOCTBEHHBIE BEKTOPBI

MaTpuiel A maror HaM BeKTOp-pyHKIUM U3 GyHIAMEHTAIBHO CICTEMbI pellIeHIIL.

[ Toro, YTOGRI MONIyUNTh BCIO PYHIAMEHTAIBHYIO CICTEMY, TpeOyeTcs HallTu 1

JIMTHEITHO HE3aBMCUMBIX PEIIeHUIL.

IIpu paccmoTpennu Teopun cucreM anddepeHINANBHBIX YpaBHEHNIT MbI 0003HaUAIN
He3aBUCUMYIO IIepeMEeHHYIO uepes &, a QYHKIIII UePe3 Yq, Yo, ... , Yy, AJI TOTO, UTOOBI
MIPOIEMOHCTPMPOBATH CXOICTBO C TEOPIUEI OTHETbHbIX A depeHIMAaTbHbIX YpaBHeHuIL. [Ipn
pelleHNUN 3afayu Mbl OyeM MCII0JIb30BaTh IJIs He3aBUCUMOIL IlepeMeHHOII 6osee
TpagMUIIOHHOe 0003HaueHMe ¢, a A QyHKIuil — 0003HAUeHNS &, Y, Z BO U30eKaHUe
M3NMIITHEe MHAeKCAIUN.

Theorem 2.23

2.23 Mertop Jiiiepa AJiA pellieHUs OAHOPOSHBIX JMHEHbIX cucteM 1Y
P KPAaTHBIX COOCTBEHHBIX YMCJIAX

Ecnn xopeHb A = )\ UMeeT KpaTHOCTH S, TO €My HOJLKHBI COOTBETCTBOBATD S JIMHEIHO
He3aBMCUMBIX perreruit. Oxuol GyHkimm e*o? 6ymer HemocTatouno. B aToM citydae miem
pellieHne B BUAE:

Y, etot + Yotetot + ... + Y, t5"tetot, (2.78)

[ onpeneneHNs KOOPAWHAT BEKTOPOB Y7, Yo, ...... , Y, mopxcraBiseM Ypasuenue (2.78) B
VICXOQHYIO CUCTEMY YPaBHEHUIT U B K&KJOM U3 YpaBHEHUII IpUpaBHUBaeM K03 UIIeHThI
NP JIMHETHO He3aBUCUMBIX (PYHKIUAX.

Theorem 2.24

2.24 OO1zee peunreHNne JMHEITHON HEOTHOPOXHOI cucTteMbl Y

Theorem 2.25

2.25 CaoiicTBa nmpeoopa3zoBanus Jlamuaca
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1. L(af + Bg) = aLf + fLg — nuneitHOCTS;
JloKa3aTeqbCTBO OUEBUIHO B CUITY JIMHETHOCTY MHTETpaJIa.

2. L(f(at)) = %F(%), a > 0 — Teopema omo6us;

Proof.

3ameHa: s = at = ds = adt.

3. L(e* f(t)) = F(p — a) - TeopeMa cMeILeHNS;

Proof.

L(eot £(t)) = / " vt f(t)dt — / " e~ 0-0)t f(1)dt = F(p — a).
0 0

4. L(f(t—a)) = e *PF(p), a> 0 - Teopema 3ama3bIBaHMs;
Proof.
L(f(t—a)) = Pt —a)dt =
(=)= [~ erse-a

3ameHa: S =t —a = ds = dt.

f(s)=0mpus <0

Theorem 2.26

2.26 O muddepeHIUPOBAaHNY N300PAIKEHIS
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L(tf(t)) = —@F(p) (2.85)
Lt f(t)) = <—1>”d%F<p> (2.86)

Proof. IIpomuddepenmnupyem o napamerpy p popmyiy Ypasuenne (2.45) u3 onpeneaeHns
npeobpasoBanns Jlamnaca:

F(p) = / " ftye i,
0
(2.87)

d - —pt = —
GO = [ eresod = —Lesw)
CoOTBETCTBEHHO,
ﬁF(p) = (=" /oo e PN f(t)dt = (—=1)"L(t" f(t)). (2.88)
dp™ o
|
Theorem 2.27
2.27 O mndPepeHnmpoBaHN OPUTHHATIA
L(f'(t)) = pF(p) — f(0). (2.89)
L(f™(t)) = p"F(p) —p"*£(0) = p" 2 f'(0) — ... = f7D(0). (2.90)
Proof.
L(f/ (1) = / T ferdie (2.91)
0
u=eP, du=—pePdt, v=f(t), dv=f'(t)dt (2.92)
S f(ev I +p [ F)edt = —f(0) + pF(). (29
0
dopmyia arsa f) (t) moxasbIBaeTcs MO MHAYKITAIL.
Basa nposepena (n = 1). Ilepexog n — n + 1:
L) = [ fr e e (2.04)
0
u=eP, du=—pePidt, v=fM(t), dv=f"r(t)dt (2.95)
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& fMWe [ p [ fMB Mt =
0

’ n— 2.96
— —f©0) + p(p" F(p) — p I £(0) — g2 (0) — - V@) = (29
= p"*VF(p) —p™ f(0) —p" ' f/(0) — ... — F™(0).

[
Theorem 2.28
2.28 006 MHTErpUpPOBAHUN OPUTUHAJIA
t
L(/ f(T)dT) = M (2.97)
0 p
Proof. BBemeM ¢yHKIm0 XeBucaiiga o cleqyIoiieMy IpaBuiTy:
1, t>0
o(t) = {0, i (2.98)
Torna:

~——
=1 mpu 0<7<t

L(/ f<7)d7>:1; /oo 01 —1) - f(r)dr =L(0*f)=L(0)L(f)zl—1)F(p(}2.99)

Theorem 2.29

2.29 IIpeoo6pasoBanusa Jlamraca mpocreiimmx QyHKIMIT

IIpeo6pasoBanue Jlamraca onpemeaeHo TOIBKO A QYHKIINIL, 0OPAIAOIXCsI B HOJb
mpu t < 0. IToaTomy BbInmChIBast TaGImITy M300payKeHMIT, OyeM CUMTATh, UTO QYHKIMN-
OpUTrMHAIBI 0OPAIAOTCS B HOJIb Ha OTPULATEIHHO ITOJYOCH.

1. L(1) = jlg;
Proof.

[ele] e—pt
L(1) :/ e Pt 1dt = — [ = —. (2.100)
0 —bp
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