Files
differential_equations/labs/lab1/code/main.py
2025-12-10 18:33:31 +03:00

190 lines
5.8 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
import matplotlib.pyplot as plt
import math
import numpy as np
from scipy.integrate import solve_ivp
from scipy.optimize import fsolve
class ODESolver:
def euler_method(self, f, t_span, y0, h):
t0, t_end = t_span
N = int((t_end - t0) / h)
t = np.linspace(t0, t_end, N + 1)
y = np.zeros(N + 1)
y[0] = y0
for i in range(N):
y[i + 1] = y[i] + h * f(t[i], y[i])
return t, y
def explicit_trapezoid(self, f, t_span, y0, h):
t0, t_end = t_span
N = int((t_end - t0) / h)
t = np.linspace(t0, t_end, N + 1)
y = np.zeros(N + 1)
y[0] = y0
for i in range(N):
k1 = f(t[i], y[i])
k2 = f(t[i] + h, y[i] + h * k1)
y[i + 1] = y[i] + (h / 2) * (k1 + k2)
return t, y
def rk4_method(self, f, t_span, y0, h):
t0, t_end = t_span
N = int((t_end - t0) / h)
t = np.linspace(t0, t_end, N + 1)
y = np.zeros(N + 1)
y[0] = y0
for i in range(N):
k1 = f(t[i], y[i])
k2 = f(t[i] + h/2, y[i] + h/2 * k1)
k3 = f(t[i] + h/2, y[i] + h/2 * k2)
k4 = f(t[i] + h, y[i] + h * k3)
y[i + 1] = y[i] + h/6 * (k1 + 2*k2 + 2*k3 + k4)
return t, y
def backward_euler(self, f, t_span, y0, h):
t0, t_end = t_span
N = int((t_end - t0) / h)
t = np.linspace(t0, t_end, N + 1)
y = np.zeros(N + 1)
y[0] = y0
for i in range(N):
t_next = t[i + 1]
def equation(z):
return z - h * f(t_next, z) - y[i]
y[i + 1] = fsolve(equation, y[i])[0]
return t, y
def implicit_trapezoid(self, f, t_span, y0, h):
t0, t_end = t_span
N = int((t_end - t0) / h)
t = np.linspace(t0, t_end, N + 1)
y = np.zeros(N + 1)
y[0] = y0
for i in range(N):
t_n = t[i]
t_np1 = t[i + 1]
y_n = y[i]
def equation(z):
return z - y_n - (h/2) * (f(t_n, y_n) + f(t_np1, z))
y[i + 1] = fsolve(equation, y_n)[0]
return t, y
def problem_1_4():
print("=== ЗАДАЧА 1.4: y' = y² - t, y(0) = 1 ===")
def f(t, y):
return y**2 - t
t_span = [0, 1.0]
y0 = 1
h = 0.25
solver = ODESolver()
t_euler, y_euler = solver.euler_method(f, t_span, y0, h)
t_trap, y_trap = solver.explicit_trapezoid(f, t_span, y0, h)
t_rk4, y_rk4 = solver.rk4_method(f, t_span, y0, h)
sol_ref = solve_ivp(f, t_span, [y0], method='RK45',
rtol=1e-10, atol=1e-12, dense_output=True)
t_ref = np.linspace(t_span[0], t_span[1], 100)
y_ref = sol_ref.sol(t_ref)[0]
y_ref_euler = sol_ref.sol(t_euler)[0]
y_ref_trap = sol_ref.sol(t_trap)[0]
y_ref_rk4 = sol_ref.sol(t_rk4)[0]
err_euler = np.linalg.norm(y_euler - y_ref_euler)
err_trap = np.linalg.norm(y_trap - y_ref_trap)
err_rk4 = np.linalg.norm(y_rk4 - y_ref_rk4)
print(f"Ошибка метода Эйлера: {err_euler:.2e}")
print(f"Ошибка явного метода трапеций: {err_trap:.2e}")
print(f"Ошибка метода РК4: {err_rk4:.2e}")
plt.figure(figsize=(12, 8))
plt.plot(t_ref, y_ref, 'k-', linewidth=5, label='Эталонное решение (solve_ivp)')
plt.plot(t_euler, y_euler, 'bo-', markersize=10, label='Метод Эйлера')
plt.plot(t_trap, y_trap, 'c*-', markersize=15, label='Явный метод трапеций')
plt.plot(t_rk4, y_rk4, 'rs-', markersize=5, label='Метод РК4')
plt.xlabel('t')
plt.ylabel('y(t)')
plt.title('Задача 1.4: y\' = y² - t, y(0) = 1')
plt.legend()
plt.grid(True, alpha=0.3)
plt.show()
return t_euler, y_euler, t_trap, y_trap, t_rk4, y_rk4, t_ref, y_ref
if __name__ == "__main__":
result1 = problem_1_4()
def problem_2_4():
print("\n=== ЗАДАЧА 2.4: y' = -2000y + t, y(0) = 0 ===")
def f(t, y):
return -2000 * y + t
t_span = [0, 1]
y0 = 0
h = 1
solver = ODESolver()
t_euler, y_euler = solver.euler_method(f, t_span, y0, h)
t_beuler, y_beuler = solver.backward_euler(f, t_span, y0, h)
t_itrap, y_itrap = solver.implicit_trapezoid(f, t_span, y0, h)
sol_ref = solve_ivp(f, t_span, [y0], method='Radau',
rtol=1e-10, atol=1e-12, dense_output=True)
t_ref = np.linspace(t_span[0], t_span[1], 100)
y_ref = sol_ref.sol(t_ref)[0]
y_ref_euler = sol_ref.sol(t_euler)[0]
y_ref_beuler = sol_ref.sol(t_beuler)[0]
y_ref_itrap = sol_ref.sol(t_itrap)[0]
err_euler = np.linalg.norm(y_euler - y_ref_euler)
err_beuler = np.linalg.norm(y_beuler - y_ref_beuler)
err_itrap = np.linalg.norm(y_itrap - y_ref_itrap)
print(f"Ошибка явного метода Эйлера: {err_euler:.2e}")
print(f"Ошибка неявного метода Эйлера: {err_beuler:.2e}")
print(f"Ошибка неявного метода трапеций: {err_itrap:.2e}")
plt.figure(figsize=(12, 8))
plt.plot(t_ref, y_ref, 'k-', linewidth=5, label='Эталонное решение (solve_ivp)')
plt.plot(t_euler, y_euler, 'bo-', markersize=4, label='Явный метод Эйлера')
plt.plot(t_beuler, y_beuler, 'g^-', markersize=4, label='Неявный метод Эйлера')
plt.plot(t_itrap, y_itrap, 'm*-',linewidth=2.2, markersize=4, label='Неявный метод трапеций')
plt.xlabel('t')
plt.ylabel('y(t)')
plt.title('Задача 2.4: y\' = -2000y + t, y(0) = 0 (жесткая система)')
plt.legend()
plt.grid(True, alpha=0.3)
plt.show()
return t_euler, y_euler, t_beuler, y_beuler, t_itrap, y_itrap, t_ref, y_ref
if __name__ == "__main__":
result2 = problem_2_4()