This commit is contained in:
2025-12-17 21:23:37 +03:00
parent 60762d2ec8
commit 62e91bfaa0
3 changed files with 5654 additions and 4731 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 59 KiB

File diff suppressed because it is too large Load Diff

View File

@@ -324,11 +324,70 @@
*Ответ*: $R eq frac(1, mu_0 H) sqrt(frac(2 U, q_m)) approx 5.37 "см", nu eq frac(mu_0 H q_m, 2 pi) approx 35 "МГц"$.
#align(center)[===== №2]
#align(center)[===== №2] // ready
*Условие*: В однородное магнитное поле с магнитной индукцией $B eq 0.4 "Тл"$ перпендикулярно полю с постоянной скоростью влетает заряженная частица. В течении $6 "мкс"$ включается постоянное электрическое поле напряжённостью $E eq 300 "В/м"$ сонаправленно магнитному полю. Рассчитать шаг винтовой траектории частицы после выключения электрического поля.
*Решение*:
*Решение*: По формуле силы Лоренца:
$
arrow(F) eq q(arrow(E) + arrow(v) times arrow(B))
$
До включения электрического поля:
$
arrow(E) eq 0, space.quad arrow(F) eq q(arrow(v) times arrow(B))
$
Частица движется по окружности
$
F_"маг" = q v B.
$
Сила Лоренца равна центростремительной силе:
$
q v B eq frac(m v^2, R) arrow.double R eq frac(m v, q B)
$
Угловая частота:
$
omega eq v/R eq frac(q B, m)
$
Когда включается электрическое поле вдоль магнитного поля, на частицу вдоль $B$ действует $F eq q E$. Соответственно вдоль оси $B$ ускорение $a eq frac(q E, m)$.
За время $Delta t$ скорость вдоль оси становится:
$
v eq a Delta t eq frac(q E, m) Delta t
$
После выключения электрического поля частица летит в магнитном поле с постоянной перпендикулярной скоростью и параллельной, то есть по винтовой траектории.
Расстояние за один оборот:
$
h eq v T,
$
где $T eq frac(2 pi, omega) eq frac(2 pi m, q B)$ - период кругового движения.
Подставим:
$
h eq v T eq frac(q E, m) Delta t dot frac(2 pi m, q B) eq frac(2 pi E Delta t, B)
$
Подставим числа:
$
h eq frac(2 pi dot 300 "В/м" dot 6 dot 10^(-6) "с", 0.4 "Тл") approx 0.28 "м".
$
*Ответ*: $h eq frac(2 pi E, B) t approx 0.028 "м"$.
@@ -407,6 +466,45 @@
*Решение*:
#align(center)[
#figure(
image("assets/110.png"),
supplement: [Рис.],
caption: [Квадратная рамка в переменном магнитном поле.]
)
]
По формуле магнитного потока через плоскость:
$
Phi eq B S cos alpha
$
Площадь рамки:
$
S eq a^2
$
Так как $B eq B_0 cos(omega t)$:
$
Phi eq B_0 a^2 cos beta cos (omega t)
$
По закону Фарадея:
$
cal(E) eq -Phi'(t) eq B_0 a^2 omega cos beta sin omega t
$
Подставив числа из условия, получим:
$
cal(E) eq 0.2 dot 0.7^2 dot 6 dot cos(45 degree) dot sin (6 dot 3) approx -0.31 "B".
$
*Ответ*: $epsilon eq frac(1, sqrt(2)) B_0 omega sin (omega t) approx minus 0.31 "В"$.
#align(center)[===== №6]