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Электростатика

Закон Кулона. Принцип суперпозиции.

№1 (done)

Условие: На шёлковой нити подвешен шар массы 𝑚, заряд которого 

𝑞+
1 . Рассчитать на какое расстояние необходимо поднести положи

тельно заряженный шар, с зарядом 𝑞+
2 , чтобы сила натяжения нити 

уменьшилась вдвое.

Решение:

Ответ: 𝑙 = √2𝑘𝑞+
1𝑞+

2
𝑚𝑔 .

№2 (done)

Условие: К потолку в одной точке на шёлковых нитях длины 𝑙 
подвешены два одинаковых шара обладающих одинаковым зарядом 𝑞 

и массой 𝑚. Расстояние между шарами 𝑥 ≪ 𝑙. Рассчитать скорость 

утечки зарядов 
𝑑𝑞
𝑑𝑡  с каждого шара, если скорость их сближения, как 

функция от 𝑥 имеет вид: 𝑣(𝑥) = 𝛼√
𝑥  (𝛼 – некоторая постоянная).

Решение:

Рис. 1. Поясняющий рисунок.
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Пусть шары отклоняются на угол 𝜃, от вертикали, когда расстояние 

между ними равно 𝑥.

Применяя второй закон Ньютона для любого шарика, получим,

𝑇 cos 𝜃 = 𝑚𝑔 (1)

и

𝑇 sin 𝜃 = 𝐹𝑒 (2)

Из уравнений 1 и 2

tg 𝜃 = 𝐹𝑒
𝑚𝑔

(3)

Из рисунка

tg 𝜃 = 𝑥

2√𝑙2 − (𝑥
2 )2

≈ 𝑥
2𝑙

 𝑥 ≪ 𝑙 (4)

Из уравнения 3 и 4

𝐹𝑒 = 𝑚𝑔𝑥
2𝑙

 или 𝑞2

4𝜋𝜀0𝑥2 = 𝑚𝑔𝑥
2𝑙

(5)

𝑞2 = 2𝜋𝜀0𝑚𝑔𝑥3

𝑙
(6)

Дифференцируя уравнение 6 по времени

2𝑞𝑑𝑞
𝑑𝑡

= 2𝜋𝜀0𝑚𝑔
𝑙

3𝑥2 𝑑𝑥
𝑑𝑡

(7)

Согласно задаче 𝑑𝑥
𝑑𝑡 = 𝑣 = 𝑎√

𝑥  (скорость сближения 𝑑𝑥
𝑑𝑡 ).

Итак, √2𝜋𝜀0𝑚𝑔
𝑙 𝑥3 𝑑𝑞

𝑑𝑡 = 3𝜋𝜀0𝑚𝑔
𝑙 𝑥2 𝑎√

𝑥

Следовательно, 
𝑑𝑞
𝑑𝑡 = 3

2𝑎√2𝜋𝜀0𝑚𝑔
𝑙 .
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Ответ: 
𝑑𝑞
𝑑𝑡 = 3𝛼

2 √𝑚𝑔
2𝑘𝑙 .

№3 (done)

Условие: Радиус векторы двух положительных зарядов 𝑞1 и 𝑞2 

соответственно ⃗𝑟1 и ⃗𝑟2. Рассчитать отрицательный заряд 𝑞3 и его 

радиус-вектор ⃗𝑟3 точки в которую его надо поместить, чтобы сила, 

действующая на каждый из зарядов была равна 0.

Решение:

Рис. 2. Поясняющий рисунок.

Выберем координатные оси, как показано на рисунке, и зафиксируем 

три заряда, 𝑞1, 𝑞2 и 𝑞3 с векторами положения ⃗𝑟1, ⃗𝑟2 и ⃗𝑟3 соответ

ственно.

Теперь для равновесия 𝑞3

+𝑞2𝑞3( ⃗𝑟2 − ⃗𝑟3)
| ⃗𝑟2 − ⃗𝑟3|3

+ 𝑞1𝑞3( ⃗𝑟1 − ⃗𝑟3)
| ⃗𝑟1 − ⃗𝑟3|

= 0 (8)

или, 
𝑞2

| ⃗𝑟2− ⃗𝑟3|3 = 𝑞1
| ⃗𝑟1− ⃗𝑟3|2

потому что 
⃗𝑟2− ⃗𝑟3

| ⃗𝑟2− ⃗𝑟3| = ⃗𝑟1− ⃗𝑟3
| ⃗𝑟1− ⃗𝑟3|

или, 
√𝑞2( ⃗𝑟1 − ⃗𝑟3) = √𝑞1( ⃗𝑟3 − ⃗𝑟2)
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или, ⃗𝑟3 =
√𝑞2 ⃗𝑟1+√𝑞1 ⃗𝑟2√𝑞1+√𝑞2

Для равновесия 𝑞1,

𝑞3( ⃗𝑟3 − ⃗𝑟1)
| ⃗𝑟3 − ⃗𝑟1|3

+ 𝑞2( ⃗𝑟2 − ⃗𝑟1)
| ⃗𝑟2 − ⃗𝑟1|3

= 0 (9)

или, 𝑞3 = −𝑞2
| ⃗𝑟2− ⃗𝑟1|2 | ⃗𝑟1 − ⃗𝑟3|2

Подставляя значение ⃗𝑟3, получаем,

𝑞3 = −𝑞1𝑞2

(√𝑞1 + √𝑞2)
2 . (10)

Ответ: 𝑞3 = − 𝑞1𝑞2

(√𝑞1+√𝑞2)2 , ⃗𝑟3 =
√𝑞1 ⃗𝑟2+√𝑞2 ⃗𝑟1√𝑞1+√𝑞2

.

№4 (done)

Условие: Точечный заряд 𝑞 = 50 мкКл расположен в точке с радиус-

вектором ⃗𝑟0 = 2 ⃗𝑖 + 3 ⃗𝑗. Найти напряжённость ⃗𝐸 электрического поля 

и её модуль в точке с радиус-вектором ⃗𝑟 = 8 ⃗𝑖 − 5 ⃗𝑗. Координаты век

торов заданы в метрах.

Решение:

Рис. 3. Поясняющий рисунок.

⃗𝑧 − ⃗𝑧0 = 6 ⃗𝑖 − 8 ⃗𝑗 (11)

𝐸 = 1
4𝜋𝜀0

⋅ 𝑞
𝑟2

(12)
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𝑧 = | ⃗𝑧 − ⃗𝑧0| =
√

36 + 64 = 10 м (13)

𝐸 = 9 ⋅ 109 ⋅ 5 ⋅ 105

100
= 4500 В/м = 4.5 кВ/м (14)

⃗𝐸 = ⃗𝑧 − ⃗𝑧0
| ⃗𝑧 − ⃗𝑧0|

⋅ 𝐸 = (0.6𝑖 − 0.8𝑗) ⋅ 4.5 =

= (2.7𝑖 − 3.6𝑗) кВ/м.
(15)

Ответ: 𝐸 = 4.5 кВ/м; ⃗𝐸 == 2.7 ⃗𝑖 − 3.6 ⃗𝑗.

№5 (done)

Условие: Точечные заряды 𝑞(+) и 𝑞(−) расположены по углам квадра

та (Рис. 4), диагональ которого равна 2𝑙. Найти модуль напряжённости 

электрического поля в точке, отстоящей на расстояние 𝑥 от плоскости 

квадрата, симметрично относительно его вершин.
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Рис. 4. Поясняющий рисунок.

Решение:

Рис. 5. Пояснительный рисунок.

Зафиксируем систему координат, взяв точку пересечения диагоналей 

как начало координат, а ⃗𝑘 - нормальное направление, выходящее из 

плоскости фигуры. Следовательно, искомая напряженность поля:
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⃗𝐸 = 𝑞
4𝜋𝜀0

𝑙 ⃗𝑖 + 𝑥 ⃗𝑘
(𝑙2 + 𝑥2)

3
2

+

+ −𝑞
4𝜋𝜀0

𝑙(− ⃗𝑖) + 𝑥 ⃗𝑘
(𝑙2 + 𝑥2)

3
2

+

+ −𝑞
4𝜋𝜀0

𝑙 ⃗𝑗 + 𝑥 ⃗𝑘
(𝑙2 + 𝑥2)

3
2

+

+ 𝑞
4𝜋𝜀0

𝑙(− ⃗𝑗) + 𝑥 ⃗𝑘
(𝑙2 + 𝑥2)

3
2

=

= 𝑞
4𝜋𝜀0(𝑙2 + 𝑥2)

3
2
[2𝑙 ⃗𝑖 − 2𝑙 ⃗𝑗]

(16)

Таким образом,

𝐸 = 𝑞𝑙
√

2𝜋𝜀0(𝑙2 + 𝑥2)
3
2
. (17)

Ответ: 𝐸 = 𝑘 2
√

2𝑞𝑙
(𝑙2+𝑥2)

3
2
.

№6 (done)

Условие: В центре равностороннего треугольника расположен заряд 

𝑞0 = 10 нКл. Рассчитайте, какие одинаковые заряды 𝑞1 необходимо 

расположить в вершинах этого треугольника, чтобы результирующая 
сила, действующая на каждый заряд, была равна нулю.

Решение:

Ответ: 𝑞1 = −17 нКл.

№7

Условие: Система состоит из протона 𝑝 и электрона 𝑒, расстояние 
между которыми 𝑟 = 50 пм. Рассчитать модуль напряжённости элек
трического поля, создаваемого этими частицами в точках 𝐴 и 𝐵, когда 
эти частицы находятся в положении, изображённом на (Рис. 6).
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Рис. 6. Поясняющий рисунок.

Решение:

Ответ: 𝐸𝐴 = 4.3 ⋅ 1011 В/м, 𝐸𝐵 = 4.2 ⋅ 1011 В/м.

№8 (done)

Условие: В вершинах квадрата со сторонами 𝑎 = 0.08 м расположе

ны одинаковые заряды 𝑞(+) = 5 нКл. Рассчитайте модуль напряжён

ности электрического поля в середине одной из сторон квадрата.

Решение:

Ответ: 𝐸 ≈ 10 кВ/м.

№9 (done)

Условие: Свинцовый шарик диаметр которого 𝑑 = 7 мм поместили 

в однородное электрическое поле в глицериновый раствор. Рассчитать 

12



заряд этого шарика, если электрическое поле направленно вверх, а 

модуль его напряжённости 𝐸 = 9 кВ/см.

Решение:

Ответ: 𝑞 ≈ 20 нКл.

№10 (done)

Условие: Кусок тонкой проволоки изогнутый полукольцом радиусом 

𝑅 имеет равномерно распределённый заряд 𝑞. Рассчитать модуль 

напряжённости электрического поля 𝐸 в центре этого полукольца.

Решение:

Ответ: 𝐸 = 𝑞
2𝜋2𝜀0𝑅2 .

№11 (done)

Условие: Найти модуль напряжённости электрического поля на оси 
заряженного тонкого кольца, как функцию расстояния до центра 

кольца – 𝐸(𝑧), если заряд кольца равен 𝑞, а радиус 𝑅. Исследовать 

полученную зависимость при 𝑧 ≫ 𝑅. Рассчитать максимальное значе

ние модуля напряжённости 𝐸max и соответствующую ему координату 

точки на оси 𝑂𝑍.

Решение:

Ответ: 𝐸(𝑧) = 𝑘𝑞𝑧
(𝑧2+𝑅2)

3
2
, 𝑧max = 𝑅√

2 , 𝐸max = 2𝑘𝑞
3

3
2𝑅2

.

№12 (done)

Условие: Рассчитать модуль силы взаимодействия между тонким 

кольцом радиуса 𝑅, заряд которого равен 𝑞 и длинной равномерно 

заряженной нитью, имеющей линейную плотность заряда равную 𝜆, 

если нить расположена вдоль оси симметрии кольца, так, что один её 
конец совпадает с центром кольца.

Решение:

Ответ: 𝐹 = 𝑘𝑞𝜆
𝑅 .
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№13 (done)

Условие: Тонкий стержень длины 𝑙 имеет равномерно распределённый 

заряд 𝑞. Рассчитать, модуль напряжённости электрического поля в 

точке расположенной на расстоянии 𝑎 от одного из концов стержня, по 

линии стержня.

Решение:

Ответ: 𝐸 = 𝑘𝑞
𝑎(𝑙+𝑎) .

№14

Условие: Линейная плотность тонкого заряженного кольца радиуса 𝑅 

зависит от азимутального угла по закону 𝜆 = 𝜆0 cos 𝜑 (𝜆0 – постоян

ная). Рассчитать модуль напряжённости электрического поля в центра 
кольца и на оси симметрии кольца в зависимости от расстояния до 
центра кольца.

Решение:

Ответ: 𝐸𝑂 = 𝜆0
4𝜀0𝑅 , 𝐸(𝑧) = 𝜆0𝑅2

4𝜀0(𝑅2+𝑧2)
3
2
.

№15

Условие: Система состоит из равномерно заряженного стержня длины 

2𝑎, расположенного в вакууме. Рассчитать модуль вектора напряжён

ности как функцию расстояния 𝑟 от центра стержня до точки на 

прямой:

• перпендикулярной стержню и проходящей через его центр;
• совпадающей с осью стержня, при 𝑟 > 𝑎.

Заряд стрежня равен 𝑞.

Решение:

Ответ: 𝐸 = 𝑘𝑞
𝑟
√

𝑎2+𝑟2 , 𝐸 = 𝑘𝑞
𝑟2−𝑎2 .

№16

Условие: Сфера радиуса 𝑅 заряжена с поверхностной плотностью 

𝜎 = ( ⃗𝑟, ⃗𝑎), где ⃗𝑎 некоторый постоянный вектор, а ⃗𝑟 – радиус вектор 
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точки на сфере отностительно её центра. Рассчитать вектор напряжён
ности электрического поля в центре сферы.

Решение:

Ответ: ⃗𝐸 = 𝑎𝑅
3𝜀0

⃗𝑒𝑧.

№17

Условие: Рассчитать вектор напряжённости в центре заряженного 

шара радиуса 𝑅 если объёмная плотность заряда шара 𝜌 = ( ⃗𝑟, ⃗𝑎), где 

⃗𝑎 некоторый постоянный вектор, а ⃗𝑟 – радиус вектор произвольной 

точки шара, проведённый из его центра.

Решение:

Ответ: ⃗𝐸 = 𝑅2𝑎
6𝜀0

⃗𝑒𝑧.

№18

Условие: Бесконечно длинная цилиндрическая поверхность круглого 
сечения заряжена так, что поверхностная плотность зависит только от 

угла 𝜑 цилиндрической системы координат: 𝜎 = 𝜎0 cos 𝜑. Рассчитать 

модуль вектора в произвольной точке, лежащей на оси цилиндра.

Решение:

Ответ: 𝐸 = 𝜎0
2𝜀0

.

Расчет напряженности непрерывного распределения заряда 
на основе теоремы Гаусса.

№1

Условие: Напряжённость электрического поля, как функция коорди

нат имеет вид: ⃗𝐸 = 𝛼𝑥 ⃗𝑖+𝛼𝑦 ⃗𝑗
𝑥2+𝑦2 , где 𝛼 = const, а ⃗𝑖, ⃗𝑗 – орты координатных 

осей 𝑂𝑋 и 𝑂𝑌  соответственно. Найти поток вектора ⃗𝐸 через сферу 

радиуса 𝑅 с центром в начале координат.

Решение:

Ответ: 𝑃 = 4𝜋𝛼𝑅.
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№2

Условие: Объёмная плотность положительно заряженного шара ра

диуса 𝑅 зависит только от расстояния до центра шара: 𝜌(𝑟) = 𝜌0(1 −
𝑟
𝑅), где 𝜌0 = const. Найти:

• модуль напряжённости электрического поля внутри и вне шара, как 

функцию 𝑟;

• максимальное значения модуля напряжённости 𝐸max и соответству

ющее ему значение 𝑟max.

Диэлектрическая проницаемость всюду 𝜀 = 1.

Решение:

Ответ: 𝐸𝑟(𝑟 ≤ 𝑅) = 𝜌0𝑟
3𝜀0

(1 − 3𝑟
4𝑅),  𝐸𝑟(𝑟 ≥ 𝑅) = 𝜌0𝑅3

12𝜀0𝑟2 ,  𝑟max =
2
3𝑅,  𝐸𝑟(𝑟max) = 𝜌0𝑅

9𝜀0
.

№3

Условие: Система состоит из равномерно заряженного шара радиуса 

𝑅 = 0.2 м, объёмная плотность которого 𝜌 = 20 нКл/м3. Рассчитать 

модуль напряжённости электрического поля:

• на расстоянии 𝑟 = 0.1 м от центра шара;

• на поверхности шара;
• на расстоянии 𝑟 = 0.25 м от центра шара.

Диэлектрическая проницаемость материала из которого состоит шар 

𝜀 = 5.

Решение:

Ответ: 𝐸(0.1) ≈ 15 В/м,  𝐸(0.2) ≈ 30 В/м (𝑟 ≤
𝑅),  𝐸(0.25) ≈ 96 В/м,  𝐸(0.2) ≈ 151 В/м (𝑟 ≥ 𝑅).

№4

Условие: Шар радиуса 𝑅 заряженный равномерно помещён в неко

торую среду диэлектрическая проницаемость которой 𝜀 = 1. Среда 

заполнена зарядом, объёмная плотность которого 𝜌 = 𝛼
𝑟 , где 𝛼 – 
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постоянная, а 𝑟 – расстояние от центра шара. Рассчитать заряд шара 

при котором модуль напряжённости электрического поля вне шара не 

зависит от 𝑟.

Решение:

Ответ: 𝑞 = 2𝜋𝛼𝑅2.

№5

Условие: Система представлена областью пространства. По простран
ству распределён заряд, плотность которого зависит от расстояния 

до центра по закону 𝜌 = 𝜌0 exp(−𝛼𝑟3), где 𝛼 некоторая постоянная. 

Найти модуль напряжённости, как функцию 𝑟.

Решение:

Ответ: 𝐸𝑟 = 𝜌0
3𝜀0𝛼𝑟2 (1 − exp(−𝛼𝑟3)).

№6

Условие: Рассчитать напряжённость электрического поля бесконеч
ной плоскости, заряженной равномерно. Поверхностная плотность 

заряда – 𝜎. Расчёт произвести 2-мя способами:

• с использованием закона Кулона;
• с использованием теоремы Гаусса.

Решение:

Ответ: ⃗𝐸 = 𝜎
2𝜀0

𝑛⃗.

№7

Условие: Рассчитать напрёжённость электростатического поля созда
ваемого бесконечной длинной нитью, заряженной равномерно. Поверх

ностная плотность заряда – 𝜆. Расчёт произвести 2-мя способами:

• с использованием закона Кулона;
• с использованием теоремы Гаусса.

Решение:

Ответ: ⃗𝐸 = 𝜆
2𝜋𝜀0𝑟 𝑛⃗.
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№8

Условие: Рассчитать вектор напряжённости электростатического по
ля в области пересечения двух шаров, равномерно заполненными 

разноименными зарядами с объёмной плотностью 𝜌 и −𝜌. Расстояния 

между центрами шаров характеризуется вектором 𝑎.

Решение:

Ответ: ⃗𝐸 = 𝜌
3𝜀0

⃗𝑎.

№9

Условие: Напряжённость аксиально симметричного электростатиче

ское поля зависит от расстояния до источника по закону ⃗𝐸 = 𝛼
𝑟2 ⃗𝑟 

(𝛼 – постоянная). Рассчитать заряд внутри сферы радиуса 𝑅, центр 

которой расположен на источнике.

Решение:

Ответ: хз.

Работа кулоновских сил. Потенциал электростатического по­
ля.

№1 (done)

Условие: Потенциал электрического поля зависит от координат 𝑥, 𝑦 

по закону:

• 𝜑(𝑥, 𝑦) = 𝛼(𝑥2 + 𝑦2),
• 𝜑(𝑥, 𝑦) = 𝛼𝑥𝑦,

где 𝛼 = const. Найти вектор напряжённости этих полей.

Решение:

Ответ: ⃗𝐸 = −2𝛼 ⃗𝑟, ⃗𝐸 = −𝛼𝑦 ⃗𝑖 − 𝛼𝑥 ⃗𝑗.

№2 (done)

Условие: Найти потенциалы, как функции координат следующих 
электрических полей:

a) ⃗𝐸 = 𝑎(𝑦 ⃗𝑖 + 𝑥 ⃗𝑗);
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b) ⃗𝐸 = 2𝑎𝑥𝑦 ⃗𝑖 + 𝑎(𝑥2 − 𝑦2) ⃗𝑗;

c) ⃗𝐸 = 𝑎𝑦 ⃗𝑖 + (𝑎𝑥 + 𝑏𝑧) ⃗𝑗 + 𝑏𝑦 ⃗𝑘.

Решение:

Ответ: 𝜑𝑎 = −𝑎𝑥𝑦 + 𝐶,  𝜑𝑏 = 𝑎𝑦(𝑦2

3 − 𝑥2) + 𝐶,  𝜑𝑐 =
−𝑦(𝑎𝑥 + 𝑏𝑧) + 𝐶 .

№3 (done)

Условие: Потенциал электрического поля имеет вид: 𝜑(𝑥, 𝑦, 𝑧) =
𝛼(𝑥𝑦 − 𝑧2), где 𝛼 = const. Найти проекцию напряжённости электри

ческого поля в точке 𝑀{2, 1, −3} на направление вектора ⃗𝑎 = ⃗𝑖 + 3 ⃗𝑘.

Решение:

Ответ: 𝐸𝑎 = (𝐸⃗,𝑎⃗)
𝑎 ≈ −6𝛼.

№4 (done)

Условие: Тонкий кусок проволоки изогнутый полукольцом имеет 

равномерно распределённый заряд, линейная плотность которого 𝜆 =
5 нКл/м. Рассчитать потенциал 𝜑, создаваемый зарядом проволоки в 

центре полукольца.

Решение:

Ответ: 𝜑 = 𝜋𝑘𝜆 ≈ 0.14 кВ.

№5 (done)

Условие: Тонкий стержень длиной 𝑙 = 10 см заряжен равномерно. 

Рассчитать потенциал 𝜑 электрического поля в точке, расположенной 

на оси стержня на расстоянии 𝑎 = 50 см. от его ближайшего конца, 

если полный заряд стержня 𝑞 = 10 мкКл.

Решение:

Ответ: 𝜑 = 𝑘𝑞
𝑙 ln( 𝑙+𝑎

𝑎 ) ≈ 0.16 МВ.
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№6 (done)

Условие: Тонкая проволока свёрнутая в кольцо несёт равномерный 

заряд 𝑞 = 20 нКл. Рассчитать потенциал электрического поля кольца 

в точке, лежащей на оси кольца на расстоянии 𝑎 = 50 см от центра 

кольца. Радиус кольца 𝑅 = 8 см.

Решение:

Ответ: 𝜑 = 𝑞
2𝜀0

√
𝑅2+𝑎2 ≈ 0.36 кВ.

№7 (done)

Условие: Рассчитать разность потенциалов между центрами тонких 

проволочных колец радиуса 𝑅 = 30 см, если центры колец лежат на 

одной оси, а расстояние между центрами 𝑙 = 52 см. Заряды колец 

равны 𝑞 и −𝑞. |𝑞| = 0.4 мкКл.

Решение:

Ответ: Δ𝜑 = 2𝑘𝑞( 1
𝑅 − 1√

𝑅2+𝑙2 ) ≈ 12 кВ.

№8 (done)

Условие: Кольцо радиуса 𝑅 заряжено неравномерно. Рассчитать 

работу, совершаемую при перемещении заряда 𝑞0 из центра кольца 

в произвольную точку лежащую на оси кольца, если полный заряд 

кольца равен 𝑞.

Решение:

Ответ: 𝐴 = 𝑘𝑞𝑞0( 1
𝑅 − 1√

𝑅2+𝑧2 ).

№9 (done)

Условие: Рассчитать разность потенциалов между точками (1) и (2) 
электрического поля, создаваемого тонкой равномерно заряженной 
нитью бесконечной длины, если известно, что точка (2) расположена в 
7 раз дальше от нити, чем точка (1). Линейная плотность заряда нити 

𝜆 = 9 мкКл/м.

Решение:
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Ответ: Δ𝜑 = 𝜆
2𝜋 ln 7 ≈ 0.32 МВ.

№10

Условие: Провод, изображённый на (Рис. 7) заряжен равномерно с 

линейной плотностью 𝜆 = 0.5 нКл/м. Длина прямого участка 𝑎 =
50 см, радиус полукольца 𝑅 = 20 см. Рассчитать, какую работу 

совершат электрические силы при удалении точечного заряда 𝑞 =
10 нКл от центра полукольца на бесконечность.

Рис. 7. Поясняющий рисунок.

Решение:

Ответ: 𝐴 = 𝑘𝑞𝜆(𝜋 + ln(𝑅+𝑎
𝑎 )) ≈ 0.2 мкДж.

№11

Условие: Электрическое поле создано равномерно заряженным шаром 

радиуса 𝑅 = 20 см. Объёмная плотность заряда 𝜌 = 10 нКл/м3. 

Рассчитать разность потенциалов между точками, лежащими на рас

стоянии 𝑟1 = 1 см и 𝑟2 = 25 см от центра шара соответственно. 

Диэлектрическая проницаемость всюду равна 1.

Решение:

Ответ: Δ𝜑 ≈ 11 В.
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№12

Условие: В вершинах равностороннего треугольника, сторона кото

рого 𝑎 = 5 см, расположены 3 точечных заряда 𝑞 и −2𝑞, как это 

показано на (Рис. 8). Рассчитать работу электрических сил при пере

мещении заряда −2𝑞 из точки 𝐵 в точку 𝐶 если 𝑞 = 3 нКл.

Рис. 8. Пояснительный рисунок.

Решение:

Ответ: 𝐴 = 4𝑘𝑞2

𝑎 ≈ 6.5 мкДж.

№13

Условие: Коническая поверхность, радиус основания которой равен 

𝑅 равномерно заряжена с поверхностной плотностью 𝜎. Рассчитать 

потенциал электростатического поля в вершине конуса.
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Решение:

Ответ: 𝜑 = 𝜎𝑅
2𝜀0

.

№14

Условие: Рассчитать потенциал в точке, расположенной на краю 

тонкого диска, радиуса 𝑅, если поверхностная плотность заряда, рас

пределённого по диску равна 𝜎.

Решение:

Ответ: 𝜑 = 𝜎𝑅
𝜋𝜀0

.

№15

Условие: Потенциал электростатического поля внутри заряженного 

шара зависит только от расстояния до центра шара: 𝜑 = 𝑎𝑟2 + 𝑏. 
Рассчитать объёмную плотность заряда, как функцию 𝑟.

Решение:

Ответ: 𝜌(𝑟) = −6𝜀0𝑎.

№16

Условие: Заряд 𝑞 распределён равномерно по объёму шара радиуса 

𝑅. Рассчитать:

• потенциал в центре шара;
• потенциал внутри шара как функцию 𝑟.

Решение:

Ответ: 𝜑(0) = 3𝑞
8𝜋𝜀0𝑅 ,  𝜑(𝑟) = 𝜑(0)(1 − 𝑟2

3𝑅3 )

Электрический диполь.

№1 (done)

Условие: Заряд 𝑞 помещён в точку с координатами (𝑎, 0). Найти 

вектор дипольного момента, если заряд −𝑞 поместить в точку с коор

динатами:
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• (−𝑎, 0);
• (0, 𝑎);
• (−𝑎, −𝑎).

Решение:

Ответ: ⃗𝑝 = 2𝑞𝑎 ⃗𝑖; ⃗𝑝 = 𝑞(𝑎 ⃗𝑖 − 𝑎 ⃗𝑗); ⃗𝑝 = 𝑞(2𝑎 ⃗𝑖 + 𝑎 ⃗𝑗).

№2

Условие: Рассчитать потенциалы и модули напряжённости электри

ческого поля, создаваемого диполем в точках 𝐴 и 𝐵, расположенных 

на расстоянии 𝑟 от центра диполя на перпендикуляре к диполю и на 

оси диполя в направлении диполя, соответственно. Модуль дипольного 

момента 𝑝 = 0.12 нКл/м, |𝑞| = 1 нКл, 𝑟 = 8 см.

Решение:

Ответ: 𝜑(𝐴) = 0 B, 𝜑(𝐵) ≈ 386 B, 𝐸(𝐴) ≈ 1.08 кВ/м, 𝐸(𝐵) =
22 кВ/м.

№3

Условие: Показать, что потенциал поля диполя с электрическим мо

ментом ⃗𝑝 (Рис. 9) может быть представлен, как 𝜑(𝑟) = (𝑝⃗, ⃗𝑟)
4𝜋𝜀0𝑟3 , где 𝑟 – 

радиус-вектор.

• Найти с помощью этого выражения вектор напряжённости ⃗𝐸 как 

функцию ⃗𝑟, ⃗𝑝 и модуль вектора напряжённости электрического поля 

диполя, как функцию 𝑟 и 𝜃.

• Найти проекции напряжённости электрического поля диполя на ось 

𝑍 − 𝐸𝑧, и на плоскость перпендикулярную оси 𝑍 − 𝐸⟂.
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Рис. 9. Поясняющий рисунок.

Решение:

Ответ: ⃗𝐸( ⃗𝑝, ⃗𝑟) = 𝑘(3(𝑝⃗, ⃗𝑟) ⃗𝑟
𝑟5 − 𝑝⃗

𝑟3 ),  𝐸(𝑝, 𝜃) =
𝑘𝑝
𝑟3

√
1 + 3 cos2 𝜃; 𝐸𝑧 = 𝑘𝑝

𝑟3 (3 cos2 𝜃 − 1),  𝐸⟂ = 3𝑘𝑝 cos 𝜃 sin 𝜃
𝑟3 .

№4

Условие: Диполь с электрическим моментом ⃗𝑝 равномерно вращается 

с частотой 𝜈 вокруг оси, проходящей через его центр перпендикулярно 

плечу диполя. Получить потенциал создаваемый диполем в точке 𝑆, 

отстоящей от центра диполя на расстояние 𝑟 ≫ 𝑙 (𝑙 – плечо диполя), 

как функцию времени. Считать, что 𝜑(0) = 0.

Решение:

Ответ: 𝜑(𝑡) = −𝑘𝑝
𝑟2 sin(2𝜋𝜈𝑡).

№5

Условие: Для системы состоящей из 2-х сонаправленных точечных 

диполей, лежащих на одной прямой, ⃗𝑝1 и ⃗𝑝2, рассчитать модуль силы 

взаимодействия между этими диполями если 𝑝1 = 1 пКл/м, 𝑝2 =
4 пКл/м, 𝑟 = 0.02 м (𝑟 – расстояние между центрами диполей)
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Решение:

Ответ: 𝐹 = 3𝑝1𝑝2
2𝜋𝜀0

1
𝑟4 ≈ 1.35 мкН.

№6

Условие: Система состоит из равномерно заряженной нити, изогнутой 

в форме полуокружности радиуса 𝑅 c зарядом 𝑞 > 0, и отрицатель

ного заряда −𝑞, расположенного в её центре. Найти:

• Модуль электрического дипольного момента этой системы;
• Модуль напряжённости электрического поля в точке, расположен

ной на оси диполя на расстоянии 𝑟 ≫ 𝑅.

Решение:

Ответ: 𝑝 = 2𝑅𝑞
𝜋 ; 𝐸(𝑟) = 𝑅𝑞

𝜀0𝜋2𝑟3 .

№7

Условие: Система состоит из бесконечной равномерно заряженной 

тонкой нити и диполя, расположенного на расстоянии 𝑟 от нити. ⃗𝑝 – 

дипольный момент, 𝜆 – линейная плотность заряда нити. Найти силу, 

действующую на диполь, если ⃗𝑝 ориентирован:

• вдоль нити;
• по вектору ⃗𝑟, перпендикулярному к нити;

• перпендикулярно нити и вектору ⃗𝑟.

Решение:

Ответ: ⃗𝐹 = ⃗0;   ⃗𝐹 = − 𝑝⃗𝜆
𝜀0𝜋𝑟2 .

№8

Условие: Диполь ⃗𝑝 расположен во внешнем однородном поле ⃗𝐸0, так 

что ⃗𝑝 ↑↑ ⃗𝐸0. При таком расположении одна из эквипотенциальных 

поверхностей представляет из себя сферу. Рассчитать радиус этой 
сферы.

Решение:

Ответ: хз.
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Электростатическое поле при наличии диэлектриков.

№1

Условие: В центре шара, состоящего из однородного диэлектрика с 

проницаемостью 𝜀 расположен точечный заряд 𝑞. Найти поляризован

ность ⃗𝑃 , как функцию радиус-вектора ⃗𝑟 относительно центра шара, 

а также связанный заряд 𝑞′ внутри сферы, радиус которой меньше 

радиуса шара.

Решение:

Ответ: ⃗𝑃 = 𝑞
4𝜋𝑟3𝜀(𝜀 − 1) ⃗𝑟;  𝑞′ = −𝑞

𝜀(𝜀 − 1).

№2

Условие: Рассчитать поверхностные плотности связанных зарядов, 
модули векторов поляризованности и напряжённости поля, индуциро

ванного точечным зарядом 𝑞, помещённым в центр двух концентри

ческих сфер радиусами 𝑅1 и 𝑅2, если сферический слой заполнен 

веществом с диэлектрической проницаемостью 𝜀.

Решение:

Ответ: 𝐸(𝑟 < 𝑅1) = 𝑞
4𝜋𝜀0𝑟2 ,  𝑃(𝑟 < 𝑅1) = 0;  𝐸(𝑅1 < 𝑟 <

𝑅2) = 1
4𝜋𝜀0𝜀𝑟2 , 𝑃 (𝑅1 < 𝑟 < 𝑅2) = 𝑞

4𝜋𝜀𝑟2 (𝜀 − 1);  𝐸(𝑟 > 𝑅2) =
𝑞

4𝜋𝜀0𝑟2 , 𝑃 (𝑟 > 𝑅2) = 0; 𝜎(𝑟 = 𝑅1) = − 𝑞
4𝜋𝑅2

1𝜀(𝜀 − 1), 𝜎(𝑟 = 𝑅2) =
𝑞

4𝜋𝑅2
1𝜀(𝜀 − 1).

№3

Условие: Показать, что на границе однородного диэлектрика с про

водником поверхностная плотность связанных зарядов 𝜎св = −𝜎(𝜀−1)
𝜀  , 

где 𝜀 - диэлектрическая проницаемость, а 𝜎 – поверхностная плотность 

зарядов на проводнике.

Решение:

Ответ: хз.
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№4

Условие: Система состоит из диэлектрического тела имеющего форму 

сферического слоя с радиусами 𝑅1 и 𝑅2 (𝑅2 > 𝑅1) и диэлектрической 

проницаемостью 𝜀, расположенного в вакууме. Найти модуль напря

жённости, как функцию расстояния 𝑟 от центра тела, если:

• внутренняя поверхность тела несёт свободный поверхностный заряд 

𝑞;

• свободный заряд 𝑞 равномерно распределён по объёму тела.

Решение:

Ответ: 

𝐸𝑎(𝑟 < 𝑅1) = 0; 𝐸𝑏(𝑟<𝑅1) = 0; 𝐸𝑎(𝑅1<𝑡<𝑅2) = 𝜎𝑅2
1

𝜀𝜀0𝑟2 ; 𝐸𝑏(𝑅1<𝑡<𝑅2) =
𝜌𝑟

3𝜀𝜀0
(1 − 𝑅3

1
𝑟3 ); 𝐸𝑎(𝑟>𝑅2) = 𝜎𝑅2

1
𝜀0𝑟2 ; 𝐸𝑏(𝑟>𝑅2) = 𝜌(𝑅3

2−𝑅3
1)

𝜀0𝑟2 .

№5

Условие: Вблизи некоторой точки лежащей на границе между стеклом 
и вакуумом модуль напряжённости электрического поля в вакууме 

– 𝐸0, а угол между вектором ⃗𝐸0 и вектором нормали к стеклу – 

𝛼0. Рассчитать модуль вектора напряжённости в стекле, угол между 

вектором напряжённости в стекле и нормалью, а также поверхностную 
плотность связанных зарядов.

Решение:

Ответ: 𝐸 = 𝐸0
𝜀 √cos2 𝛼0 + 𝜀2 sin2 𝛼0; ctg 𝛼 =

ctg 𝛼0
𝜀 ; 𝜎 = 𝐸0(𝜀−1)𝜀0

𝜀 cos 𝛼0.

Электростатическое поле при наличии проводников.

№1

Условие: Над проводящей горизонтальной плоскостью на изолирую

щей нити, коэффициент жёсткости которой 𝜇 висит небольшой шарик. 

Когда шарик зарядили, он опустился на 𝑥, а расстояние до проводящей 

плоскости стало равно 𝑙. Рассчитайте заряд шарика.

Решение:
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Ответ: 𝑞 = 4𝑙√𝜇𝑥𝜋𝜀0.

№2

Условие: Система состоит из точечного диполя ⃗𝑝 и проводящей 

плоскости. Расстояние от диполя до плоскости 𝑙. Рассчитать силу 

действующую на диполь, если дипольный момент перпендикулярен 
плоскости.

Решение:

Ответ: ⃗𝐹 = 3𝑝2

32𝜀0𝑙4 ⃗𝑗.

№3

Условие: С одной стороны проводящей плоскости расположены 2 

заряда 𝑞 и −𝑞. Расстояние между зарядами равно 𝑙, расстояние от 

каждого заряда до плоскости равно 𝑙
2 . Рассчитать модуль силы, дей

ствующей на каждый заряд.

Решение:

Ответ: 𝐹 = 𝑞2

8𝜋𝜀0
(2

√
2 − 1).

№4

Условие: Система состоит из точечного заряда 𝑞 расположенного на 

расстоянии 𝑦 от проводящей плоскости. Рассчитать поверхностную 

плотность зарядов, индуцированных на плоскости, как функцию рас

стояния 𝑥 от основания перпендикуляра, опущенного из точки распо

ложения заряда на плоскость.

Решение:

Ответ: 𝜎 = − 𝑞𝑦
2𝜋(𝑥2+𝑦2)

3
2
.

№5

Условие: Система состоит из нити и проводящей плоскости. Нить 

заряжена равномерно, с линейной плотностью 𝜆, и ориентирована 

перпендикулярно плоскости. Расстояние от ближайшего конца нити, 

ближайшего к плоскости, до плоскости 𝑙. Рассчитать поверхностную 

плотность индуцированного на плоскости заряда:
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• в точке 𝑂, являющейся следом нити на плоскости;

• как функцию расстояния 𝑥 до точки 𝑂.

Решение:

Ответ: 𝜎(𝑂) = − 𝜆
2𝜋𝑙 ; 𝜎(𝑥) = − 𝜆

2𝜋(𝑥2+𝑙2)
1
2
.

№6

Условие: Рассчитать потенциал незаряженной проводящей сферы ра

диуса 𝑅, вне которой на расстоянии 𝑑 расположен заряд 𝑞.

Решение:

Ответ: 𝜑 = 𝑘𝑞
𝑑 .

Энергия электростатического поля.

№1

Условие: В вершинах прямоугольника со сторонами 𝑎 = 40 см и 𝑏 =
20 см расположены четыре одинаковых заряда 𝑞 = 2 мкКл. Рассчи

тать энергию взаимодействия этой системы.

Решение:

Ответ: 𝑊 = 2𝑞2𝑘(1
𝑎 + 1

𝑏 + 1√
𝑎2+𝑏2 ) ≈ 0.7 Дж.

№2

Условие: Система состоит из 4-х одинаковых зарядов 𝑞 = 500 нКл, 

расположенных в вершинах квадрата сторона которого 𝑎 = 20 см. 

Рассчитать потенциальную энергию взаимодействия данной системы.

Решение:

Ответ: 𝑊 =
√

2𝑞2𝑘
𝑎 (2

√
2 + 1) ≈ 61 мДж.

№3

Условие: Во внешнем электростатическом поле, модуль напряжённо

сти которого 𝐸 = 300 кВ/м, расположен точечный диполь, модуль 

дипольного момента которого 𝑝 = 12 пКл/м. Под действием этого 

поля диполь начинает вращаться вокруг оси, проходящей через его 

30



центр. Рассчитать модуль угловой скорости вращения диполя в момент 
установления равновесия, если в начальный момент времени диполь 
был ориентирован перпендикулярно полю. Момент инерции диполя 

относительно оси вращения - 𝐼 = 2 ⋅ 10−9 кг/м2.

Решение:

Ответ: 𝜔 = √2𝑝𝐸
𝐼 = 60 рад/с.

№4

Условие: Система состоит из двух концентрических равномерно 

заряженных сфер, радиусами 𝑅1 = 1 м и 𝑅2 = 1.5 м, с поверхност

ными плотностями зарядов 𝜎1 = 4 мкКл/м2 и 𝜎2 = 10 мкКл/м2, 

расположенных в вакууме. Рассчитать энергию электрического поля 
заключённую между сферами.

Решение:

Ответ: 𝑊 = 2𝜋𝜎2
1𝑅4

1
𝜀0

(𝑅2−𝑅1
𝑅1𝑅2

) ≈ 3.8 Дж.

№5

Условие: Система состоит из двух концентрических проводящих сфер 

радиусами 𝑅1 = 10 см и 𝑅2 = 40 см, имеющими одинаковый заряд 

𝑞 = 200 нКл. Рассчитать энергию электрического поля заключённого 

между двумя этими сферами.

Решение:

Ответ: 𝑊 = 𝑞2

8𝜋𝜀0
(𝑅2−𝑅1

𝑅2𝑅1
) ≈ 1.35 млДж.

Конденсаторы.

№1

Условие: Получить формулы для расчёта ёмкости следующих конден

саторов (𝜀 среды между обкладками принять равной 1):

• Сферического, если известно что радиус внутренней обкладки 𝑅1, 

а внешней 𝑅2;

• Цилиндрического, если известно, что радиус внутренней обкладки 

𝑅1, внешней 𝑅2, а высота равна 𝑑;
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• Плоского, если известно, что площадь обкладок равна 𝑆, а рассто

яние между обкладками 𝑑.

Решение:

Ответ: 𝐶сф = 4𝜋𝜀0𝑅1𝑅2
𝑅2−𝑅1

, 𝐶цил = 2𝜋𝜀0𝑑
ln 𝑅2

𝑅1

, 𝐶пл = 𝜀0𝑆
𝑑 .

№2

Условие: Плоский воздушный конденсатор, расстояние между пласти

нами которого 𝑑, расположен вертикально. Конденсатор заряжен до 

разности потенциалов 𝑈 . На расстоянии 𝑏 от отрицательно заряженной 

пластины находится положительно заряженная пылинка массой 𝑚 и 

зарядом 𝑞. Рассчитать время за которое пылинка достигнет пластины 

конденсатора.

Решение:

Ответ: 𝑡 = √2𝑏𝑚𝑑
𝑞𝑈 .

№3

Условие: К одной из пластин плоского заряженного конденсатора 

прилегает диэлектрическая пластинка толщиной 𝑑1 и диэлектрической 

проницаемостью 𝜀. Расстояние между пластинами конденсатора 𝑑, а 

разность потенциалов 𝑈 . Рассчитать модули напряжённости 𝐸1 и 𝐸2 

в диэлектрике и воздухе.

Решение:

Ответ: 𝐸1 = 𝑈
𝑑1+𝜀𝑑−𝜀𝑑1

,  𝐸2 = 𝑈𝜀
𝑑1+𝜀𝑑−𝜀𝑑1

.

№4

Условие: К одной из пластин плоского конденсатора прилегает пла

стина диэлектрика толщиной 𝑑1 и диэлектрической проницаемостью 

𝜀. Расстояние между пластинами конденсатора 𝑑. После отключения 

конденсатора от источника питания пластину вынули. Рассчитать во 
сколько раз выросла разность потенциалов между пластинами конден
сатора.

Решение:
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Ответ: 𝑛 = 𝜀𝑑
𝑑1+𝜀𝑑−𝜀𝑑1

.

Постоянное магнитное поле

Индукция магнитного поля. Закон Био-Савара

№1

Условие: Заряженная элементарная частица движется со скоростью, 

модуль которой 𝑣 = 900 м/c. В некоторый момент в точке наблюде

ния 𝑃  модуль напряжённости электрического поля этой частицы 𝐸 =
600 В/м, а угол между векторами скорости и напряжённости 𝛼 = 30°. 
Рассчитать индукцию магнитного поля данной частицы.

Решение:

Рис. 10. Пояснительный рисунок.

𝐵 = 𝜇0𝑣 sin 𝛼
4𝜋𝑟2

(18)

𝐸 = 𝑘 1
𝑟2

(19)

Умножим и разделим 18 на 𝜀0 чтобы сделать замену на 𝐸:

𝐵 = 𝜇0𝑣 sin 𝛼𝜀0𝐸 (20)

Подставив числа, получим:

𝐵 = 900 ⋅ 600 ⋅ 1
2

⋅ 12.75 ⋅ 10−7 ⋅ 8.85 ⋅ 10−12

= 3 ⋅ 10−12 = 3 пТл.
(21)

Ответ: 𝐵 = 3 пТл.
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№2

Условие: Используя закон Био-Савара, получить формулу для рас
счёта модуля вектора индукции магнитного поля, создаваемого током 

𝐼 , протекающем в линейном бесконечном проводнике в точке, распо

ложенной на расстоянии 𝑟0 от проводника.

Решение:

Рис. 11. Поясняющий рисунок.

Магнитное поле прямого тока, т.е. тока, текущего по тонкому прямому 
проводу бесконечной длины. По свойству векторного произведения 

следует, что в произвольной точке 𝐴 векторы 𝑑𝐵⃗ от всех элементов 

токов имеют одно направление – за плоскость рисунка.

Поэтому можно складывать просто модули 𝑑𝐵⃗. В нашем случае 𝑑𝐵⃗ 

удобней выразить не через угол между 𝑑 ⃗𝑙 и ⃗𝑟, а через 𝛼, тогда

𝑑𝐵 = 𝜇0
4𝜋

𝐼𝑑𝑙 cos 𝛼
𝑟3 . (22)

Как видно из Рис. 11 𝑑𝑙 cos 𝛼 = 𝑟𝑑𝛼 и 𝑟 = 𝑟0
cos 𝛼 . Значит 𝑑𝐵 = 𝜇0

4𝜋 ⋅
𝐼 cos 𝛼𝑑𝛼

𝑟0
. Интегрируя последнее выражение по углу, получим
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𝐵 = 𝜇0
4𝜋

𝐼
𝑏
(sin 𝛼2 − sin 𝛼1). (23)

Это выражение позволяет находить магнитную индукцию от конечного 

проводника. В случае бесконечного проводника (𝛼2 = 𝜋
2 , 𝛼1 = −𝜋

2 ):

𝐵 = 𝜇0
2𝜋

⋅ 𝐼
𝑟0

(24)

Ответ: 𝐵 = 𝜇0𝐼
2𝜋𝑟0

.

№3

Условие: Рассчитать модуль вектора индукции магнитного поля, 
создаваемого конечным прямолинейным участком проводника, длины 

𝑙, по которому протекает ток 𝐼 , в точке отстоящей на произвольном 

расстоянии 𝑟0 от оси проводника.

Решение:
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Рис. 12. Поясняющий рисунок.

Для решения задачи воспользуемся принципом суперпозиции. Разо

бьем проводник на элементарные участки 𝑑 ⃗𝑙, по которым течет ток 𝐼 

(Рис. 12). Согласно закону Био-Савара, вектор магнитной индукции, 

создаваемого в точке 𝐴 каждым элементом тока 𝐼 ⋅ 𝑑 ⃗𝑙 равен

𝑑𝐵⃗ = 𝜇0
4𝜋

𝐼[𝑑 ⃗𝑙, ⃗𝑟]
𝑟3 . (25)

Векторы 𝑑 ⃗𝑙 и ⃗𝑟 для всех участков проводника лежат в плоскости чер

тежа, поэтому в точке 𝐴 векторы 𝑑𝐵⃗ имеют одинаковое направление, 

перпендикулярное плоскости чертежа (от нас ⊗), что продемонстриро

вано на нижнем рисунке. Сложение векторов 𝑑𝐵⃗ сводится к сложению 
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их модулей. В качестве переменной интегрирования выберем угол 𝛼 

(угол между 𝑥 и 𝑟). Выразим через угол 𝛼 все остальные величины. Из 

Рис. 12 видно, что 𝑟 = 𝑥
cos 𝛼 , 𝑙 = 𝑥 tg 𝛼, поэтому длина элемента тока 

связана с приращением 𝛼 соотношением

𝑑𝑙 = 𝑥 𝑑𝛼
cos2 𝛼

. (26)

Магнитная индукция, создаваемая элементом проводника, равна:

𝑑𝐵 = 𝜇0𝐼
4𝜋𝑟2

𝑟𝑑𝛼
cos 𝛼

sin(𝜋
2

+ 𝛼) = 𝜇0𝐼
4𝜋𝑥

cos 𝛼𝑑𝛼. (27)

Угол 𝛼 для всех элементов прямого тока изменяется в пределах от 𝛼1 

до 𝛼2 (Рис. 12), тогда

𝐵 = ∫ 𝑑𝐵 = ∫
𝛼2

𝛼1

𝜇0𝐼
4𝜋𝑥

cos 𝛼𝑑𝛼 = 𝜇0𝐼
4𝜋𝑥

(sin 𝛼2 − sin 𝛼1), (28)

𝐵 = 𝜇0𝐼
4𝜋𝑥

(sin 𝛼2 − sin 𝛼1), (29)

где 𝛼1 и 𝛼2 углы, под которыми мы видим из точки, в которой 

определяем поле, концы проводника. Эти углы являются алгебраиче
скими величинами и отсчитываются от перпендикуляра, опущенного 

из точки на проводник. Положительное направление отсчета угла 𝛼 

соответствует углу, отсчитываемому от перпендикуляра в направлении 
тока.

Ответ: 𝐵 = 𝜇0𝐼
4𝜋𝑟0

(cos 𝛼1 + cos 𝛼2).

№4

Условие: Замкнутый контур с током имеет вид прямоугольника с 

диагональю 𝑑 = 16 см, угол между диагоналями 𝛼 = 30°. Сила тока, 

протекающего по контуру 𝐼 = 5 A. Рассчитать модуль индукции маг

нитного поля в центре контура.
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Решение:

Рис. 13. Поясняющий рисунок.

В системе СИ: 𝑑 = 16 см = 0.16 м.

По принципу суперпозиции для магнитного поля:

𝐵⃗ = 𝐵⃗1 + 𝐵⃗2 + 𝐵⃗3 + 𝐵⃗4. (30)

Так как все 𝐵⃗𝑖 сонаправлены, то 𝐵 = 2(𝐵1 + 𝐵2). По закону Био-

Савара-Лапласа:

𝐵 = 2(𝜇0𝐼
2𝜋

(
cos 𝜋−𝜑

2
𝑑
2 cos 𝜑

2
+

cos 𝜑
2

𝑑
2 sin 𝜑

2
)) =

= 𝜇0𝐼
𝜋

( 1
𝑑
2 sin 𝜑

2 cos 𝜑
2
) = 4𝜇0𝐼

𝜋𝑑 sin 𝜑

(31)

Подставив числа из условия, получим:
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𝐵 = 4 ⋅ 4𝜋 ⋅ 10−7 ⋅ 5
𝜋 ⋅ 0.16 ⋅ sin 30°

≈ 0.1 (32)

Ответ: 𝐵 = 0.1 мТл.

№5

Условие: Определить модуль вектора индукции магнитного поля на 

оси кругового тока 𝐼 радиуса 𝑅, как функцию 𝐵(𝑧), где 𝑧 расстояние 

до центра контура.

Решение:

Рис. 14. Поясняющий рисунок.

Магнитное поле на оси кругового тока.

𝑑𝐵 = 𝜇0
4𝜋

𝐼𝑑𝑙
𝑟2

(33)

𝐵 = ∫
𝑙
𝑑𝐵𝜏 = ∫

𝑙
𝑑𝐵 sin 𝜑 = 𝜇0𝐼

4𝜋𝑟2 sin 𝜑 ∫
𝑙
𝑑𝑙 =

= 𝜇0𝐼
4𝜋𝑟2 sin 𝜑2𝜋𝑅 = 𝜇0𝐼𝑅

2𝜋𝑟2 sin 𝜑
(34)
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Преобразуем полученное выражение, учитывая, что sin 𝜑 = 𝑅
𝑟 ,  𝑟2 =

𝑅2 + 𝑎2. После подстановки получим

𝐵 = 𝜇0𝐼𝑅
2𝑟2 sin 𝜑 = 𝜇0𝐼𝑅

2(𝑅2 + 𝑎2)
𝑅√

𝑅2 + 𝑎2
= 𝜇0𝐼𝑅2

2(𝑅2 + 𝑎2)
3
2

(35)

Ответ: 𝐵(𝑧) = 𝜇0𝐼𝑅2

2(𝑅2+𝑧2)
3
2
.

№6

Условие: По тонкому замкнутому проводнику (Рис. 15) течёт ток, 

сила которого 𝐼 = 5 А. Радиус изогнутой части проводника 𝑅 =
120 мм, угол 𝜑 = 90°. Рассчитать модуль вектора магнитной индук

ции в точке 𝑂.

Рис. 15. Проводник.

Решение:
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Рис. 16. Поясняющий рисунок.

Пусть 𝜃 = 𝜑
2 = 45°.

Для части окружности:

𝐵1 = 𝜇0𝐼
4𝜋𝑅2 ∫

2𝜋−2𝜃

0
𝑅𝑑𝛼 = 𝜇0𝐼(𝜋 − 𝜃)

2𝜋𝑅
. (36)

Для отрезка:

𝑑𝐵2 = 𝜇0
4𝜋

𝐼𝑑𝑙
𝑟2 sin ∠(𝑑 ⃗𝑙; ⃗𝑧) = 𝜇0

4𝜋
⋅ 𝐼𝑑𝑙

𝑟2 cos 𝛼 (37)
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Поясняющий рисунок. 17. Рис.

cos 𝛼𝑑𝑙 = 𝑧𝑑𝛼 ⇒ 𝑑𝑙 = 𝑧𝑑𝛼
cos 𝛼

(38)

𝑧 = 𝑏
cos 𝛼

,  𝑏 = 𝑅 cos 𝜃 (39)

𝐵2 = 𝜇0𝐼
4𝜋

∫
𝜃

−𝜃

𝑑𝛼 ⋅ cos 𝛼
cos 𝛼 ⋅ 𝑏

⋅ cos 𝛼 = 𝜇0𝐼
4𝜋𝑅 cos 𝜃

⋅ 2 sin 𝜃 = 𝜇0𝐼
2𝜋𝑅

tg 𝜃(40)

𝐵 = 𝐵1 + 𝐵2 = 𝜇0𝐼
2𝜋𝑅

(𝜋 − 𝜃 + tan 𝜃) (41)

Подставив числа, получим:

𝐵 = 4𝜋 ⋅ 10−7 ⋅ 5
2𝜋 ⋅ 0.12

(𝜋 − 𝜋
4

+ tg 𝜋
4
) ≈ 28 мкТл. (42)

Ответ: 𝐵 = 𝜇0𝐼
2𝜋𝑅(1 + 3

4𝜋) ≈ 28 мкТл.
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№7

Условие: Замкнутый контур, по которому течёт ток силы 𝐼 имеет 

форму показанную на (Рис. 18). Радиус окружности 𝑅, длина стороны 

квадрата 𝑎. Найти индукцию магнитного поля в точке 𝑂.

Рис. 18. Контур.

Решение:

Ответ: 𝐵 = 𝜇0𝐼
4𝜋 ( 3𝜋

2𝑅 +
√

2
𝑎 ).

№8

Условие: Тонкий провод с изоляцией образует плоскую спираль из 

𝑁 = 200 плотно прилегающих витков, по которым течёт ток 𝐼 =
5 мА. Радиус внутреннего витка 𝑎 = 100 мм, радиус внешнего витка 

𝑏 = 200 мм. Рассчитать индукцию магнитного поля в центре спирали.

Решение: Магнитная индукция одного витка (окружности):

𝐵1 = 𝜇0𝐼
2𝑧

(43)

𝑑𝑁 = 𝑁
𝑏 − 𝑎

𝑑𝑧 (44)

Подставим 43 и 44 в
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𝐵 = ∫ 𝐵1𝑑𝑁 = 𝜇0𝐼𝑁
2(𝑏 − 𝑎)

∫
𝑏

𝑎

𝑑𝑧
𝑧

= 𝜇0𝐼𝑁
2(𝑏 − 𝑎)

ln 𝑧 |𝑏𝑎 = 𝜇0𝐼𝑁
2(𝑏 − 𝑎)

ln 𝑏
𝑎

(45)

Подставим числа и получим

𝐵 = 4𝜋 ⋅ 10−7 ⋅ 5 ⋅ 10−3 ⋅ 200
2(0.2 − 0.1)

ln 0.2
0.1

≈ 4.4 мкТл. (46)

Ответ: 𝐵 = 𝜇0𝐼𝑁
2(𝑏−𝑎) ln 𝑏

𝑎 ≈ 4.4 мкТл.

№9

Условие: В параллельных плоскостях, расположенных на расстоянии 

𝑑 = 8 см друг от друга на одной оси находятся два круговых витка 

радиуса 𝑅 = 5 см каждый. По виткам в одном направлении текут 

токи 𝐼1 = 𝐼2 = 2 А. Рассчитать напряжённость магнитного поля в 

центре одного из витков.

Решение:

Рис. 19. Поясняющий рисунок.

Согласно принципу суперпозиции напряженность в точке 𝐶 равна

𝐻⃗ = 𝐻⃗1 + 𝐻⃗2,   где 𝐻 = 𝐼1
2𝑅

, (47)
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𝐻2 = 𝐼2𝑅2

2(𝑅2 + 𝑑2)
3
2
. (48)

Если токи текут в одном направлении, то 𝐻 = 𝐻1 + 𝐻2. По условию

𝐼1 = 𝐼2 = 𝐼 (49)

Тогда

𝐻 = 𝐼
2𝑅

+ 𝐼𝑅2

2(𝑅2 + 𝑑2)
3
2
. (50)

Подставив числа, получим:

𝐻 = 2
2 ⋅ 0.05

+ 2 ⋅ 0.052

2(0.052 + 0.082)
3
2

≈ 23 А/м. (51)

Ответ: 𝐻 = 𝐼
2( 1

𝑅 + 𝑅2

(𝑑2+𝑅2)
3
2
) ≈ 23 А/м.

№10

Условие: Рассчитать модуль вектора магнитной индукции на оси 

соленоида, длина которого 𝑙, количество витков проволоки, плотно 

прилегающих друг к другу равно 𝑁  . Через витки течёт ток 𝐼 , радиус 

витков 𝑅0.

Решение:

Ответ: 𝐵(𝑧) = 𝜇0𝐼𝑁
2𝑙 (

𝑙
2−𝑧

√𝑅2
0+( 𝑙

2−𝑧)2 +
𝑙
2+𝑧

√𝑅2
0+( 𝑙

2+𝑧)2 ).
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Закон полного тока

№1

Условие: Используя закон полного тока, найти модуль вектора индук
ции магнитного поля, создаваемого током текущим по коаксиальному 

кабелю. Ток 𝐼 течёт по центральной жиле радиуса 𝑅1, и возвраща

ется по оболочке, внутренний и внешний радиусы которой 𝑅2 и 𝑅3 

соответственно. Пространство между жилой и оболочкой заполнено 

диэлектриком. Магнитную проницаемость всюду считать равной 1.

Решение:

Ответ: 𝐵(𝑟 < 𝑅1) = 𝜇0𝐼𝑟
2𝜋𝑅2

1
,  𝐵(𝑅1 < 𝑟 < 𝑅2) = 𝜇0𝐼

2𝜋𝑟 , 𝐵(𝑅2 < 𝑟 <
𝑅3) = 𝜇0𝐼

2𝜋𝑟(1 − 𝑟2−𝑅2
2

𝑅2
3−𝑅2

2
),  𝐵(𝑟 > 𝑅3) = 0.

№2

Условие: Определить индукцию магнитного поля тока, равномерно 
распределённого:

• по бесконечной плоскости с линейной плотностью 𝑗;
• по двум параллельным бесконечным плоскостям с линейными плот

ностями 𝑗 и −𝑗.

Решение:

a)

Рис. 20. Поясняющий рисунок.

По закону полного тока:
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∮
𝐿

𝐵⃗ ⋅ 𝑑 ⃗𝑙 = 𝜇0𝐼полн (52)

∮
𝐿

𝐵⃗ ⋅ 𝑑 ⃗𝑙 = ∫
𝑙1

𝐵1 ⋅ 𝑑𝑙 + ∫
𝑙2

𝐵2 ⋅ 𝑑𝑙 ⋅ cos 𝜋
2

+ ∫
𝑙3

𝐵3𝑑𝑙 cos 0 + ∫
𝑙4

𝐵4𝑑𝑙 cos 𝜋
2

= 2𝐵𝑙(53)

𝐼полн = 𝑗 ⋅ 𝑙 (54)

2𝐵𝑙 = 𝜇0𝑖𝑙 ⇒ 𝐵 = 1
2
𝜇0𝑗 (55)

б)

Рис. 21. Поясняющий рисунок.

𝐵⃗ = 𝐵⃗ ⃗𝑗 + 𝐵⃗− ⃗𝑗 (56)

𝐵 = 0 вне плоскостей.

𝐵 = 2𝐵пл = 𝜇0𝑗 между плоскостями. (57)

Ответ: a) 𝐵 = 𝜇0𝑗
2 , б) 𝐵 = 𝜇0𝑗.
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№3

Условие: Однородный ток, плотность которого 𝑗 течёт внутри неогра

ниченной пластины толщины 2𝑑 параллельно её поверхности. Найти 

индукцию магнитного поля этого тока, как функцию расстояния 𝑥 

от средней плоскости пластины. Магнитную проницаемость всюду 
считать равной 1.

Решение:

Рис. 22. Поясняющий рисунок.

Рис. 23. Поясняющий рисунок.

По теореме о циркуляции
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∮ 𝐵𝑑𝑧 = 𝜇0𝑗2𝑥𝑙 (58)

𝐼 = 2𝑥𝑙𝑗 (59)

Если 𝑙 ≫ 𝑥, то интегралом по ⟂ составляющим можно пренебречь, 

тогда:

𝐵 ⋅ 2𝑙 = 𝜇0 ⋅ 2𝑥𝑙𝑗 (60)

𝐵 = 𝜇0𝑥𝑗 (61)

Возьмем 𝑥 > 𝑑

∮ 𝐵𝑑𝑧 = 𝜇0𝐼 = 𝜇0 ⋅ 2𝑑𝑙𝑗 (62)

𝐵 ⋅ 2𝑙 = 𝜇0 ⋅ 2𝑑𝑙𝑗,  𝐵 = 𝜇0𝑑𝑗 (63)

Ответ: 𝐵(𝑥 > 𝑑) = 𝜇0𝑑𝑗,  𝐵(𝑥 < 𝑑) = 𝜇0𝑥𝑗.

№4

Условие: Найти вектор плотности тока, как функцию расстояния 𝑟 от 

оси аксиально-симметричного параллельного потока электронов, если 

индукция магнитного поля внутри потока зависит от 𝑟 как 𝐵(𝑟) =
𝛽𝑟𝛼, где 𝛽 и 𝛼 положительные постоянные.

Решение:
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Рис. 24. Пояснительный рисунок.

Возьмем контур, ⟂ пучку радиуса 𝑟 и центром в центре пучка, тогда

∮ 𝐵𝑑𝑟 = 𝛽𝑟2 ⋅ 2𝜋𝑟 = 2𝜋𝛽𝑟𝛼+1 (64)

Пусть 𝑗 = 𝑗(𝑟), тогда

∫
𝑟
𝑗𝑑𝑆 = ∫

𝑟

0
2𝜋𝑥𝑗(𝑥)𝑑𝑥 (65)

Итого

2𝜋𝛽𝑟𝛼+1 = ∫
𝑟
2𝜋𝜇0𝑥𝑗(𝑥)𝑑𝑥 =

= 𝛽𝑟𝛼+1 = 𝜇0 ∫
𝑟

0
𝑥𝑗(𝑥)𝑑𝑥

(66)

Дифференцируем по 𝑟
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𝛽(𝛼 + 1)𝑟𝛼 = 𝜇0𝑟𝑗(𝑟) ⇒ 𝑗(𝑟) = 𝛽(𝛼 + 1)
𝜇0

𝑟𝛼−1 (67)

Ответ: ⃗𝑗(𝑟) = 𝛽(𝛼+1)𝑟𝛼−1

𝜇0
⃗𝑒𝑧.

№5

Условие: Используя закон полного тока, рассчитать индукцию маг

нитного поля внутри соленоида длиной 𝐿 = 0.5 м, содержащего 𝑁 =
1000 витков плотной обмотки, если сопротивление обмоток 𝑅 =
120 Ом, а напряжение на её концах 𝑈 = 60 В.

Решение:

∮
𝐿

𝐵𝑑𝐿 = 𝜇0 ∑
𝑖

𝐼𝑖,  𝐵𝐿 = 𝜇0𝐼𝑁 (68)

𝐼 = 𝑈
𝑅

,  𝐵 = 𝜇0𝑈𝑁
𝑅𝐿

(69)

Подставим числа:

𝐵 = 4𝜋 ⋅ 10−7 ⋅ 60 ⋅ 1000
120 ⋅ 0.5

≈ 1.25 мТл. (70)

Ответ: 𝐵 = 1.25 мТл.

№6

Условие: По бесконечному прямому проводу, радиус сечения которого 

𝑅, течёт постоянный ток, плотность которого ⃗𝑗. Найти вектор магнит

ной индукции поля, создаваемого этим током, в точке, положение 

которой относительно оси провода определяется радиус-вектором ⃗𝑟.

Решение:
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Рис. 25. Поясняющий рисунок.

∮
𝐿

𝐵⃗ ⋅ 𝑑 ⃗𝑙 = ∫ 𝐵 ⋅ 𝑑𝑙 ⋅ cos 0° = 𝐵 ⋅ 2𝜋𝑟 (71)

𝐼полн = ∫
𝑆

⃗𝑗 ⋅ 𝑑 ⃗𝑆 = ∫ 𝑗𝑑 ⃗𝑆 = 𝑗 ⋅ 𝜋𝑟2 (72)

При 𝑟 < 𝑅:

𝐵 ⋅ 2𝜋𝑟 = 𝑗𝜋𝑟2𝜇0 ⇒ 𝐵 = 1
2
𝜇0𝑗𝑟 (73)

𝐵⃗1 = 𝐵1 ⋅ ⃗𝑒𝜑 𝐵⃗1 = 1
2
𝜇0 ⃗𝑗 × ⃗𝑟 = 𝜇0

2
[ ⃗𝑗, ⃗𝑟] (74)

Рис. 26. Поясняющий рисунок.

При 𝑟 > 𝑅:

𝐼полн = 𝑗 ⋅ 𝜋𝑅2 (75)

52



𝐵2 ⋅ 2𝜋𝑟 = 𝜇0𝑗𝜋𝑅2 ⇒ 𝐵⃗2 = 𝜇0𝑅2

2
𝑗
𝑟

⃗𝑒𝜑 (76)

𝐵⃗2 = 𝜇0𝑅2

2
[ ⃗𝑗, ⃗𝑟]
𝑟2

(77)

Ответ: 𝐵⃗(𝑟 < 𝑅) = 𝜇0[ ⃗𝑗; ⃗𝑟]
2 , 𝐵⃗(𝑟 > 𝑅) = 𝜇0𝑅2[ ⃗𝑗; ⃗𝑟]

2 .

№7

Условие: По длинному цилиндрическому проводу течёт ток, плот

ность которого ⃗𝑗. Внутри провода имеется цилиндрическая полость, 

идущая параллельно оси провода. Расстояние от оси провода до оси 

полости задаётся вектором ⃗𝑙. Найти вектор индукции магнитного поля 

внутри полости.

Решение:

Рис. 27. Поясняющий рисунок.
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𝐵⃗ = 𝐵⃗0 − 𝐵⃗′, (78)

где 𝐵⃗0 - если проводник сплошной.

𝐵⃗′ - от тока, текущего по той части проводника, которую удалили.

То теореме о циркуляции:

2𝜋𝑧𝐵0 = 𝜇0𝜋𝑧2𝑗 ⇒ 𝐵0 = 1
2
𝜇0𝑧𝑗 (79)

Или в векторной форме

𝐵⃗0 = 1
2
𝜇0[ ⃗𝑗; ⃗𝑧] (80)

𝐵⃗′ = 1
2
𝜇0[ ⃗𝑗; ⃗𝑧′] (81)

𝐵⃗ = 1
2
𝜇0[ ⃗𝑗; ⃗𝑧 − ⃗𝑧′] = 1

2
𝜇0[ ⃗𝑗; ⃗𝑙] (82)

Ответ: 𝐵⃗ = 𝜇0[ ⃗𝑗; ⃗𝑙]
2 .

№8

Условие: Ток 𝐼 течёт по длинному проводу и затем равномерно расте

кается по всем направлениям однородной проводящей среды (Рис. 28). 

Рассчитать индукцию магнитного поля в точке 𝐴, отстоящей от точки 

𝑂 на расстоянии 𝑟 под углом 𝜃.
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Рис. 28. Проводящая среда.

Решение:
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Рис. 29. Поясняющий рисунок.

Система обладает аксиальной симметрией.

𝐵⃗(0; 𝐵𝜑; 𝑧) ⇒ ∮ 𝐵⃗𝑑 ⃗𝑙 = 𝜇0𝐼охв. (83)

𝐵 = 𝐵(𝑅) (84)

𝐵 ⋅ 2𝜋𝑅 = 𝐵2𝜋𝑟 sin 𝜃 (85)

𝐽 = 𝑑𝐼
𝑑𝜔

= 𝐼
2𝜋

= const (86)

𝐼охв = ∫
𝜃

0
𝐼 ⋅ sin 𝜃𝑑𝜃 ∫

2𝜋

0
𝑑𝜑 = 𝐼

2𝜋
2𝜋 cos 𝜃 |0𝜃 = 𝐼(1 − cos 𝜃)(87)

85 и 87 подставляем в 83
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𝐵 ⋅ 2𝜋𝑟 sin 𝜃 = 𝜇0𝐼(1 − cos 𝜃) (88)

𝐵 = 𝜇0𝐼
2𝜋𝑟 sin 𝜃

(1 − cos 𝜃) = 𝜇0𝐼
2𝜋𝑟

tg 𝜃
2
. (89)

Ответ: 𝐵 = 𝜇0𝐼
2𝜋𝑟 tan 𝜃

2 .

№9

Условие: Ток 𝐼 течёт по длинному прямому проводу круглого сечения. 

Рассчитать поток магнитного поля через половину осевого сечения 
провода приходящейся на один метр его длины.

Решение: Считаем, что ток распределен по сечению равномерно с 
плоскостью

𝑗 = 𝐼
𝜋𝑅2

(90)

Согласно теореме Стокса:

∮ 𝐵𝑑𝑟 = 𝜇0𝐼 (через сечение). (91)

2𝜋𝑟𝐵 = 𝜇0𝑗𝜋𝑟2 (92)

𝐵(𝑟) = 𝜇0𝐼
2𝜋

⋅ 𝑟2

𝑅2
1
𝑟

(93)

Поток через половину сечения на единицу длины

Φ = ∫
𝑅

0
𝑑𝑟𝐵(𝑟) = 𝜇0𝐼

2𝜋
∫

𝑅

0

𝑟𝑑𝑟
𝑅2 = 𝜇0

4𝜋
𝐼. (94)

Ответ: Φ = 𝜇0𝐼
4𝜋 .
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Магнитное поле при наличии Магнетиков. Магнитный мо­
мент.

№1

Условие: Найти магнитный момент тонкого кругового витка с током, 

если радиус витка 𝑅 = 100 мм, а индукция магнитного поля в центре 

𝐵 = 6 мкТл.

Решение:

Рис. 30. Поясняющий рисунок

𝑝𝑚 = 𝐼 ⋅ 𝑆;  𝐵 = 𝜇0 ⋅ 𝐼 ⋅ 𝑙
4𝜋 ⋅ 𝑅2 = 𝜇0 ⋅ 𝐼 ⋅ 2𝜋 ⋅ 𝑅

4𝜋 ⋅ 𝑅2 = 𝜇0𝐼
2𝑅

⇒ 𝐼 = 𝐵 ⋅ 2𝑅
𝜇0
(95)

𝑝𝑚 = 𝐵 ⋅ 2𝑅
𝜇0

⋅ 𝜋 ⋅ 𝑅2 = 2𝜋 ⋅ 𝐵 ⋅ 𝑅3

𝜇0
(96)

Подставим числа и получим

𝑝𝑚 = 6.28 ⋅ 6 ⋅ 10−6 ⋅ 0.13

1.27 ⋅ 10−6 ≈ 30 мА/м2 (97)

Ответ: 𝑝м = 2𝜋𝑅3𝐵
𝜇0

≈ 30 мА/м2.

№2

Условие: Магнитный диполь, момент которого ⃗𝑝м поместили на рас

стояние 𝑟 от длинного провода по которому течёт ток 𝐼 . Найти вектор 

силы действующей на диполь со стороны магнитного поля, создавае

мого током 𝐼 если вектор магнитного момента:

• параллелен проводнику;
• направлен по вектору ⃗𝑟;
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• совпадает по направлению с магнитным полем тока 𝐼 .

Решение:

a)

31. 

𝐹 = 𝑝𝑚
𝜕𝐵
𝜕𝑥

cos 𝛼 (98)

cos 𝛼 = 0 ⇒ 𝐹 = 0 (99)

б)

32. 

𝑊п = −𝑝𝑚𝐵 cos 𝜑 (100)
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𝐵 = 𝜇0𝐼
2𝜋𝑟′ = 𝜇0𝐼

2𝜋𝑟 cos 𝜑
(101)

𝑟′ = 𝑟 cos 𝜑 (102)

𝐹𝑥 = −𝑝𝑚
𝜕𝐵
𝜕𝑟

cos 𝜑 = −(𝑝𝑚
𝜇0𝐼

2𝜋 cos 𝜑
(− 1

𝑟2 )) cos 𝜑 = 𝑝𝑚𝜇0𝐼
2𝜋𝑟2

(103)

в)

𝐹𝑥 = −𝑝𝑚
𝜕𝐵
𝜕𝑥

cos 𝛼 = 𝑝𝑚𝜇0𝐼
2𝜋𝑟2 . (104)

Ответ: a) ⃗𝐹 = ⃗0, б) ⃗𝐹 = −𝜇0𝑝м𝐼
2𝜋𝑟2 ⃗𝑒𝜑, в) ⃗𝐹 = −𝜇0𝑝м𝐼

2𝜋𝑟2 ⃗𝑒𝑟.

№3

Условие: Тонкий диск из диэлектрика, несущий заряд поверхностная 

плотность которого 𝜎 равномерно вращается вокруг своей оси с угло

вой скоростью 𝜔. Рассчитать:

• индукцию магнитного поля в центре диска;
• магнитный момент диска.

Решение:

𝐼 = 𝑑𝑞
𝑑𝑡

,  𝜎 = 𝑑𝑞
𝑑𝑆

,  𝑑𝑞 = 𝜎𝑑𝑆 (105)

𝐼 = 𝜎𝑑𝑆𝜔
2𝜋

= 𝜎𝜔2𝜋𝑟𝑑𝑟
2𝜋

= 𝜎𝜔𝑟𝑑𝑟 (106)

𝐵 = 𝜇0
4𝜋

∫ 𝐼[𝑑𝑙, 𝑟]
𝑟3 = 𝜇0𝐼

4𝜋
∫ 𝑑𝑙𝑟 sin 𝛼

𝑟3 = 𝜇0𝐼 ⋅ 2𝜋 ⋅ 𝑟
4𝜋 ⋅ 𝑟2 = 𝜇0𝐼

2𝑟
(107)

а) 𝐵 = ∫𝑅
0

𝜇0𝜎𝜔𝑟𝑑𝑟
2𝑅 = 𝜇0𝜎𝜔𝑅

2

б) 𝑝𝑚 = ∫ 𝐼𝑑𝑆 = ∫ 𝜎𝜔𝜋𝑟3𝑑𝑟 = 𝜎𝜔𝜋𝑅4

4

Ответ: 𝐵 = 𝜇0
2 𝜎𝜔𝑅,  𝑝𝑚 = 𝜋𝜎𝑅4

4 .
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№4

Условие: Сферическая поверхность радиуса 𝑅, состоящая из ди

электрика вращается равномерно вокруг своего диаметра с угловой 

скоростью 𝜔. Рассчитать магнитную индукцию в центре сферы если 

поверхностная плотность зарядов равна 𝜎.

Решение:

Ответ: 𝐵 = 2
3𝜇0𝜎𝜔𝑅.

№5

Условие: Вдоль оси бесконечного прямого цилиндра радиуса 𝑅0 течёт 

линейный ток силой 𝐼 . Магнитная проницаемость вещества цилиндра 

𝜇. Вокруг цилиндра вакуум. Найти:

• напряженность магнитного поля 𝐻⃗ ;

• индукция магнитного поля 𝐵⃗;

• намагниченность ⃗𝐽 ;

во всех точках пространства. Рассчитать объёмную и поверхностную 
плотность молекулярных токов.

Решение:

Ответ: 𝐻⃗(𝑟 < 𝑅0) = 𝐼
2𝜋𝑟 ⃗𝑒𝜑 = 𝐻⃗(𝑟 > 𝑅0),  𝐵⃗(𝑟 < 𝑅0) =

𝜇𝜇0𝐼
2𝜋𝑟 ⃗𝑒𝜑,  ⃗𝐽(𝑟 < 𝑅0) = 𝐼(𝜇−1)

2𝜋𝑟 ⃗𝑒𝜑, 𝐵⃗(𝑟 > 𝑅0) = 𝜇0𝐼
2𝜋𝑟 ⃗𝑒𝜑, ⃗𝐽(𝑟 > 𝑅0) =

⃗0, ⃗𝑗мо = ⃗0, 𝑗мп = 𝐼(1−𝜇)
2𝜋𝑅0

.

№6

Условие: Среда состоит из однородного изотропного магнетика и 
вакуума. Модуль вектора индукция магнитного поля вблизи поверх

ности магнетика со стороны вакуума равен 𝐵. Найти модуль индукции 

магнитного поля 𝐵′ в магнетике вблизи его поверхности, если вектор 

B составляет угол 𝛼 с нормалью к поверхности раздела магнетика и 
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вакуума (поверхность можно считать плоскостью), а магнитная прони

цаемость магнетика 𝜇.

Решение:

Рис. 33. Поясняющий рисунок.

𝐵′ = √𝐵2
𝑛 + 𝐵2

𝜏 (108)

𝐵2𝑛 = 𝐵1𝑛 (109)

𝐻2𝜏 = 𝐻1𝜏 (110)

𝐵𝑛 = 𝐵 cos 𝛼 (111)

𝐵𝜏 = 𝜇𝜇0𝐻𝜏 = 𝜇𝜇0𝐻0𝜏 = 𝜇(𝐵)𝜏 = 𝜇𝐵 sin 𝛼 (112)

𝐵′ = 𝐵√cos2 𝛼 + 𝜇2 sin2 𝛼 (113)

Ответ: 𝐵′ = 𝐵√cos2 𝛼 + 𝜇2 sin2 𝛼.

№7

Условие: Воспользовавшись условиями предыдущей задачи рассчи

тать циркуляцию вектора 𝐵⃗ по замкнутому квадратному контуру, 

длина стороны которого 𝑙. Граница раздела сред пересекает контур 

параллельно двум его противоположным сторонам.

Решение:
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Ответ: ∮
𝐿
(𝐵⃗, 𝑑 ⃗𝑙) = 𝐵 sin 𝛼𝑙(1 − 𝜇).

№8

Условие: По длинному цилиндрическому проводу течёт ток перпен

дикулярно плоскости поперечного сечения. Сила тока 𝐼 . Провод изго

товлен из парамагнетика с магнитной восприимчивостью 𝜒. Найти:

• силу поверхностного молекулярного тока 𝐼′
пов;

• силу объемного молекулярного тока 𝐼′
об.

Определить как эти токи направлены друг относительно друга.

Решение: Внутри цилиндрического провода имеется внешний ток 

плотности 𝐼
𝜋𝑅2 . Это дает магнитное поле 𝐻𝜙 с

𝐻𝜙2𝜋𝑟 = 𝐼 𝑟2

𝑅2  или, 𝐻𝜙 = 𝐼𝑟
2𝜋𝑅2

(114)

Из этого 𝐵𝜙 = 𝜇𝜇0𝐼𝑟
2𝜋𝑅2  и 𝐽𝜙 = 𝜇−1

2𝜋
𝐼𝑟
𝑅2 = 𝜒𝐼

2𝜋𝑅𝑑𝑙 = 𝜒𝐼 = намагничен

ность.

Следовательно, объемный молекулярный ток,

∮
𝑟=𝑅

⃗𝐽𝜙 ⋅ 𝑑 ⃗𝑟 = ∫ 𝜒𝐼
2𝜋𝑅

𝑑𝑙 = 𝜒𝐼 (115)

Поверхностный ток получается с использованием эквивалентности 

плотности поверхностного тока к ⃗𝐽 × 𝑛⃗, это приводит к плотности 

поверхностного тока в 𝑧-направлении − 𝜒𝐼
2𝜋𝑅

Поверхностный молекулярный ток

𝐼′
пов = − 𝜒𝐼

2𝜋𝑅
(2𝜋𝑅) = −𝜒𝐼 (116)

Оба тока имеют противоположные знаки.

Ответ: 𝐼мо = 𝐼𝜒,  𝐼мп = −𝐼𝜒.
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№9

Условие: Длинный соленоид заполнен неоднородным парамагнети
ком, магнитная восприимчивость которого зависит от расстояния до 

оси как 𝜒 = 𝛼𝑟2. На оси соленоида магнитная индукция равна 𝐵0. 

Рассчитать, как функцию 𝑟:

• намагниченность магнетика;
• плотности объемного молекулярного тока.

Решение:

Ответ: 𝐽(𝑟) = 𝐵0𝛼𝑟2

𝜇0
,  𝑗(𝑟) = 2𝛼𝐵0

𝜇0
𝑟.
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Частица в магнитном поле

№1

Условие: Электрон влетает в однородное магнитное поле со скоро

стью перпендикулярной полю. Напряжённость магнитного поля 𝐻 =
103 А/м. Ускоряющая разность потенциалов, придавшая электрону 

скорость 𝑈 = 400 В. Рассчитать радиус кривизны траектории 𝑅 и 

частоту 𝑣 обращения электрона в магнитном поле.

Решение:

Ответ: 𝑅 = 1
𝜇0𝐻√2𝑈

𝑞𝑚
≈ 5.37 см, 𝜈 = 𝜇0𝐻𝑞𝑚

2𝜋 ≈ 35 МГц.

№2

Условие: В однородное магнитное поле с магнитной индукцией 𝐵 =
0.4 Тл перпендикулярно полю с постоянной скоростью влетает заря

женная частица. В течении 6 мкс включается постоянное электриче

ское поле напряжённостью 𝐸 = 300 В/м сонаправленно магнитному 

полю. Рассчитать шаг винтовой траектории частицы после выключе
ния электрического поля.

Решение: По формуле силы Лоренца:

⃗𝐹 = 𝑞( ⃗𝐸 + ⃗𝑣 × 𝐵⃗) (117)

До включения электрического поля:

⃗𝐸 = 0,   ⃗𝐹 = 𝑞( ⃗𝑣 × 𝐵⃗) (118)

Частица движется по окружности

𝐹маг = 𝑞𝑣𝐵. (119)

Сила Лоренца равна центростремительной силе:

𝑞𝑣𝐵 = 𝑚𝑣2

𝑅
⇒ 𝑅 = 𝑚𝑣

𝑞𝐵
(120)
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Угловая частота:

𝜔 = 𝑣
𝑅

= 𝑞𝐵
𝑚

(121)

Когда включается электрическое поле вдоль магнитного поля, на 

частицу вдоль 𝐵 действует 𝐹 = 𝑞𝐸. Соответственно вдоль оси 𝐵 

ускорение 𝑎 = 𝑞𝐸
𝑚 .

За время Δ𝑡 скорость вдоль оси становится:

𝑣 = 𝑎Δ𝑡 = 𝑞𝐸
𝑚

Δ𝑡 (122)

После выключения электрического поля частица летит в магнитном 
поле с постоянной перпендикулярной скоростью и параллельной, то 
есть по винтовой траектории.

Расстояние за один оборот:

ℎ = 𝑣𝑇 , (123)

где 𝑇 = 2𝜋
𝜔 = 2𝜋𝑚

𝑞𝐵  - период кругового движения.

Подставим:

ℎ = 𝑣𝑇 = 𝑞𝐸
𝑚

Δ𝑡 ⋅ 2𝜋𝑚
𝑞𝐵

= 2𝜋𝐸Δ𝑡
𝐵

(124)

Подставим числа:

ℎ = 2𝜋 ⋅ 300 В/м ⋅ 6 ⋅ 10−6 с

0.4 Тл
≈ 0.28 м. (125)

Ответ: ℎ = 2𝜋𝐸
𝐵 𝑡 ≈ 0.028 м.
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Работа по перемещению проводника с током в магнитном поле

№1

Условие: В однородное магнитное поле, индукция которого 𝐵 = 1 Тл 

внесли квадратный контур со стороной 𝑎 = 10 см, по которому течёт 

ток 𝐼 = 100 А, после чего контур свободно устанавливается в магнит

ном поле под действием механического момента. Рассчитать работу 𝐴′, 

совершаемую внешними силами при повороте контура относительно 
оси, проходящей через середину его противоположных сторон на угол 

𝛼 = 𝜋
2 .

Решение:

Ответ: 𝐴 = 𝐵𝐼𝑎2 = 1 Дж.

№2

Условие: Магнитное поле создаётся длинным прямым проводником, 

по которому течёт ток 𝐼0. В одной плоскости с проводником располо

жена квадратная рамка с током 𝐼 , сторона рамки 𝑎. Рассчитать:

• силу ампера действующую на рамку;
• работу, которую необходимо совершить при медленном повороте 

рамки вокруг оси параллельной проводнику на угол 180°, прохо

дящей через центры противоположных сторон рамки;

если расстояние от этой оси до проводника в 𝜂 раз больше стороны 

рамки.

Решение:
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Рис. 34. Поясняющий рисунок.

а) Как видно из условия, силы Ампера на сторонах (2) и (4) равны по 
величине, но противоположны по направлению. Следовательно, чистая 
эффективная сила на рамке является результатом сил, испытываемых 
сторонами (1) и (3).

Теперь сила Ампера на (1),

𝐹1 = 𝜇0
2𝜋

𝐼𝐼0
(𝜂 − 1

2)
(126)

и на (3),

𝐹3 = 𝜇0
2𝜋

𝐼0𝐼
(𝜂 + 1

2)
(127)

Итак, результирующая сила на рамке = 𝐹1 − 𝐹3, (поскольку они про

тивоположны).

= 2𝜇0𝐼𝐼0
𝜋(4𝜂2 − 1)

(128)

б) Выполненная работа при повороте рамки на некоторый угол 𝐴 =
∫ 𝐼𝑑Φ = 𝐼(Φкон − Φнач), где Φкон - поток через рамку в конечном 

положении, а Φнач - в исходное положение.
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Итак, |Φкон| = |Φнач| = Φ и Φнач = −Φкон значит,

ΔΦ = 2Φ  и 𝐴 = 𝐼2Φ (129)

Следовательно

𝐴 = 2𝐼 ∫ 𝐵⃗ ⋅ 𝑑 ⃗𝑆 = 2𝐼 ∫
𝑎(𝜂+1

2)

𝑎(𝜂−1
2)

𝜇0
2𝜋

𝐼0𝑎
𝑟

𝑑𝑟 = 𝜇0𝐼𝐼0𝑎
𝜋

ln(2𝜂 + 1
2𝜂 − 1

)(130)

Ответ: 𝐹𝐴 = 2𝜇0𝐼𝐼0
𝜋(4𝜂2−1) , 𝐴 = 𝜇0𝐼0𝐼𝑎

𝜋 ln(2𝜂+1
2𝜂−1).
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Электромагнитная индукция

Индукция токов. Закон электромагнитной индукции Фарадея

№1

Условие: В однородном магнитном поле, с индукцией модуль которой 

𝐵, расположен замкнутый контур (Рис. 35). Верхнюю часть контура, 

представляющую с собой полуокружность радиуса 𝑅0 вращают вокруг 

оси 𝑂𝑂′ с постоянной угловой частотой 𝜔. Найти э.д.с. индукции 

возникающую в контуре, как функцию времени, если в момент 𝑡 = 0 

магнитный поток через контур максимальный.

Рис. 35. Контур.

Решение:

Ответ: ℰ︀инд = 𝜋
2𝑅2

0𝐵𝜔 sin 𝜔𝑡.

№2

Условие: В однородном магнитном поле, модуль индукции которого 

𝐵 = 0.4 Тл, с постоянной частотой 𝜈 = 480 об/мин вращается за

мкнутая рамка, состоящая из 𝑁 = 1000 витков проволоки. Площадь 

ограниченная контуром рамки 𝑆 = 200 см2. Рассчитать значение эдс 
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индукции в момент, когда угол между нормалью к рамке и вектором 

магнитной индукции равен 30°.

Решение:

Рис. 36. Поясняющий рисунок

В общем случае магнитный поток Φ через некоторую плоскую поверх

ность, помещенную в однородном магнитном поле, можно определить 
по такой формуле:

Φ = 𝐵𝑆 cos 𝛼 (131)

В этой формуле 𝐵 - индукция магнитного поля, 𝑆 - площадь поверх

ности, через которую определяется магнитный поток, 𝛼 - угол между 

нормалью к площадке и вектором магнитной индукции.

Если учесть, что рамка имеет 𝑁  витков обмотки, при этом сама рамка 

вращается в поле с некоторой угловой скоростью 𝜔, то формула 131 

примет следующий вид:

Φ = 𝑁𝐵𝑆 cos 𝜔𝑡 (132)

Согласно закону Фарадея для электромагнитной индукции, ЭДС ин
дукции, возникающая в контуре при изменении магнитного потока, 
пересекающего этот контур, равна по модулю скорости изменения 
магнитного потока (то есть первой производной функции изменения 
потока от времени):

𝜀𝑖 = −Φ′(𝑡) (133)
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Тогда

𝜀𝑖 = −(𝑁𝐵𝑆 cos 𝜔𝑡)′ = 𝑁𝐵𝑆𝜔 sin 𝜔𝑡 (134)

Угловая скорость вращения 𝜔 связана с частотой вращения 𝜈 по такой 

формуле:

𝜔 = 2𝜋𝜈 (135)

Получим окончательную формулу:

𝜀𝑖 = 𝑁𝐵𝑆2𝜋𝜈 sin 2𝜋𝜈𝑡 (136)

Мы значем, что 𝜔𝑡 = 30°. Тогда:

𝜀𝑖 = 𝑁𝐵𝑆2𝜋𝜈 sin 30° = 𝑁𝐵𝑆2𝜋𝜈 1
2

= 𝑁𝐵𝑆𝜋𝜈 (137)

Подставим числа и получим:

𝜀𝑖 = 1000 ⋅ 0.4 ⋅ 0.02 ⋅ 𝜋 ⋅ 480
60

≈ 201 В (138)

Ответ: ℰ︀инд = 𝑁𝑆𝐵𝜈𝜋 ≈ 201 В.

№3

Условие: В однородном магнитном поле, модуль индукции которого 

𝐵 = 0.1 Тл расположен плоский проволочный виток, замкнутый на 

гальванометр. Площадь ограниченная контуром витка 𝑆 = 10−2 м2. 

В начальный момент времени плоскость витка располагалась перпен
дикулярно магнитному полю. После поворота витка на некоторый угол 

𝛼, через гальванометр прошёл заряд 𝑞 = 7.5 ⋅ 10−4 Кл. Рассчитайте 

угол 𝛼 на который повернули виток если его сопротивление 𝑅 = 2 Ом.

Решение: Проволочный виток (замкнутый контур) в магнитном поле. 
Магнитный поток, пронизывающий контур, находящийся в магнитном 
поле:

Φ = 𝐵 ⋅ 𝑆 ⋅ cos 𝛼. (139)
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При повороте витка, меняется угол, поэтому меняется магнитный по
ток, что приводит к возникновению ЭДС индукции. За время поворота 

Δ𝑡 по витку пройдет заряд:

𝑞 = 𝐼 ⋅ Δ𝑡, (140)

здесь 𝐼 - сила индукционного тока. Воспользуемся законом Ома:

𝐼 = 𝜀𝑖
𝑅

, (141)

ЭДС индукции, согласно закона электромагнитной индукции Фарадея:

𝜀𝑖 = ΔΦ
Δ𝑡

, (142)

ΔΦ = Φ2 − Φ1 - изменение магнитного потока. Φ1 = 𝐵𝑆, т.к. по 

условию угол между нормалью к контуру и индукцией поля равен 
нулю.

Φ2 = 𝐵 ⋅ 𝑆 ⋅ cos 𝛼, (143)

𝑞 = 𝜀𝑖
𝑅

Δ𝑡 = ΔΦ
𝑅

= 𝐵 ⋅ 𝑆 ⋅ cos 𝛼 − 𝐵 ⋅ 𝑆
𝑅

(144)

cos 𝛼 = | 𝑞 ⋅ 𝑅 + 𝐵 ⋅ 𝑆
𝐵 ⋅ 𝑆

| 1 − 𝑞 ⋅ 𝑅
𝐵 ⋅ 𝑆

(145)

Ответ: 𝛼 = 1 − 𝑅𝑞
𝐵𝑆 ≈ 120°.

№4

Условие: К источнику сторонних эдс сопротивление которого прене

брежимо мало, а 𝜀0 = 2 В подключили соленоид индуктивность кото

рого 𝐿 = 0.1 Гн, а сопротивление 𝑅 = 0.02 Ом. Рассчитать заряд, 

который пройдёт через соленоид за первые 5 с.

Решение:

Ответ: 𝑞 = 𝜀
𝑅(𝑡 + 𝐿

𝑅(exp[−𝑅
𝐿 𝑡] − 1)) ≈ 184 Кл.
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№5

Условие: Квадратная рамка со стороной 𝑎 = 70 см помещена в маг

нитное поле так, что нормаль к рамке составляет угол 𝛼 = 45° с 

направлением магнитного поля. Индукция магнитного поря меняется 

по закону 𝐵 = 𝐵0 cos 𝜔𝑡, где 𝐵0 = 0.2 Тл, 𝜔 = 6с−1. Рассчитать 

ЭДС индукции, возникающей в рамке в момент времени 𝑡 = 3 с.

Решение:

Рис. 37. Квадратная рамка в переменном магнитном поле.

По формуле магнитного потока через плоскость:

Φ = 𝐵𝑆 cos 𝛼 (146)

Площадь рамки:

𝑆 = 𝑎2 (147)
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Так как 𝐵 = 𝐵0 cos(𝜔𝑡):

Φ = 𝐵0𝑎2 cos 𝛽 cos(𝜔𝑡) (148)

По закону Фарадея:

ℰ︀ = −Φ′(𝑡) = 𝐵0𝑎2𝜔 cos 𝛽 sin 𝜔𝑡 (149)

Подставив числа из условия, получим:

ℰ︀ = 0.2 ⋅ 0.72 ⋅ 6 ⋅ cos(45°) ⋅ sin(6 ⋅ 3) ≈ −0.31 B. (150)

Ответ: 𝜀 = 1√
2𝐵0𝜔 sin(𝜔𝑡) ≈ −0.31 В.

№6

Условие: В прямом бесконечном проводнике течёт ток, сила которого 

меняется по закону 𝐼 = 𝛽𝑡3, где 𝛽 = 2 А/с3. В одной плоскости с про

водником, параллельно ему, расположена квадратная рамка, сторона 

которой 𝑎 = 20 см, а сопротивление материала рамки 𝑅 = 7 Ом. 

Расстояние от ближайшей стороны рамки до проводника 𝑙 = 20 см. 

Рассчитать силу тока в рамке в момент времени 𝑡 = 10 c.

Решение:
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Рис. 38. Поясняющий рисунок.

Магн. индукция поля, создаваемого бесконечным проводником:

𝐵 = 𝜇0𝐼
2𝜋𝑟

(151)

Найдем поток этого магнитного поля сквозь контур:

Φ𝑚 = ∫
𝑆

𝐵⃗𝑑 ⃗𝑆 = ∫
𝑙+𝑎

𝑙
𝐵 ⋅ 𝑎 ⋅ 𝑑𝑟 = 𝜇0𝐼

2𝜋
𝑎 ∫

𝑙+𝑎

𝑙

𝑑𝑟
𝑟

=

= 𝜇0𝐼𝑎
2𝜋

ln(1 + 𝑎
𝑙
)

(152)

𝜀 = −𝑑Φ𝑚
𝑑𝑡

= −𝜇0𝑎
2𝜋

ln(1 + 𝑎
𝑙
)𝑑𝐼

𝑑𝑡
(153)

𝑑𝐼
𝑑𝑡

= 𝑑
𝑑𝑡

(𝛽𝑡3) = 3𝛽𝑡2 (154)
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𝜀 = −3𝜇0𝛽𝑎𝑡2

2𝜋
ln(1 + 𝑎

𝑙
) (155)

𝐼 = |𝜀|
𝑅

= 3𝜇0𝛽𝑎𝑡2

2𝜋𝑅
ln(1 + 𝑎

𝑙
) (156)

Подставим числа и получим:

𝐼 = 3 ⋅ 4𝜋 ⋅ 10−7 ⋅ 2 ⋅ 0.2 ⋅ 102

2𝜋 ⋅ 7
ln(1 + 0.2

0.3
) ≈ 2.4 ⋅ 10−6 А.(157)

Ответ: 𝐼 = 3𝜇0𝑎𝛽
2𝜋 log(1 + 𝑎

𝑙 )𝑡
2 ≈ 2.4 ⋅ 10−6 А.

№7

Условие: П-образный проводник расположен в однородном магнитном 
поле, перпендикулярном к плоскости проводника. Магнитная индук

ция поля изменяется с постоянной скоростью 𝛽. Вдоль параллельных 

сторон проводника с постоянным ускорением 𝑎 перемещают проводник 

перемычку, длина которой 𝑙. Рассчитать эдс индукции через время 

𝑡 после начала перемещения перемычки, если в начальный момент 

времени и индукция и площадь контура равны 0.

Решение: Площадь контура как функция времени:

𝑆(𝑡) = 𝑙 ⋅ 𝑠(𝑡) = 𝑙 ⋅ 𝑎 ⋅ 𝑡2

2
(158)

Индукция магнитного поля как функция времени:

𝐵(𝑡) = 𝛽𝑡 (159)

ЭДС индукции (без учетного знака):

𝜀 = | 𝑑
𝑑𝑡

Φ | = | 𝑑
𝑑𝑡

(𝐵(𝑡) ⋅ 𝑆(𝑡)) | = | 𝑑
𝑑𝑡

[𝛽𝑡(𝑙 ⋅ 𝑎 ⋅ 𝑡2

2
)] | =

= 3
2

⋅ 𝛽 ⋅ 𝑡2 ⋅ 𝑙 ⋅ 𝑎.

(160)
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Ответ: 𝜀 = −3𝑙𝛽𝑎
2 𝑡2.

№8

Условие: Внутри длинного соленоида расположена катушка состоя

щая из 𝑁  витков. Площадь поперечного сечения катушки 𝑆. Катушку 

поворачивают с постоянной угловой скоростью 𝜔 вдоль оси совпада

ющей с её диаметром и перпендикулярной к оси соленоида. Рассчитать 
эдс индукции в катушке если, индукция магнитного поля в соленоиде 

изменяется со временем как 𝐵 = 𝐵0 sin(𝜔𝑡), а в момент времени 𝑡 =
0 ось катушки совпадала с осью соленоида.

Решение: Согласно закону электромагнитной индукции Фарадея, 
ЭДС индукции в катушке равна

𝜀𝑖 = −𝑑𝜙
𝑑𝑡

, (161)

где
• 𝜙 = 𝑁Φ - полное потокосцепление катушки,

• 𝑁  - число витков,

• Φ - магнитный поток через один виток.

Магнитный поток через один виток определяется выражением

Φ = ∫
𝑆

𝐵𝑛𝑑𝑆 = ∫
𝑆

𝐵 cos 𝛼𝑑𝑆 (162)

где

𝐵𝑛 - проекция вектора магнитной индукции 𝐵⃗ на нормаль 𝑛⃗ к плос

кости витка, 𝛼 - угол между векторами 𝐵⃗ и 𝑛⃗.

Поскольку катушка вращается с угловой скоростью 𝜔, угол между 

нормалью к витку и направлением магнитного поля меняется по закону

𝛼 = 𝜔𝑡. (163)
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В момент времени 𝑡 = 0 ось катушки совпадает с осью соленоида, 

поэтому 𝛼(0) = 0.

Поле внутри длинного соленоида однородно, следовательно, магнит
ный поток через один виток равен

Φ = 𝐵𝑆 cos 𝜔𝑡, (164)

где 𝑆 - площадь витка.

Тогда потокосцепление катушки

𝜙 = 𝑁Φ = 𝑁𝐵𝑆 cos 𝜔𝑡. (165)

Если магнитная индукция изменяется со временем по закону

𝐵 = 𝐵0 sin 𝜔𝑡, (166)

то

𝜙 = 𝑁𝐵0𝑆 sin 𝜔𝑡 cos 𝜔𝑡 = 1
2
𝑁𝐵0𝑆 sin 2𝜔𝑡. (167)

Теперь найдем ЭДС индукции:

𝜀𝑖 = 𝑑𝜙
𝑑𝑡

= 1
2
𝑁𝐵0𝑆 ⋅ 2𝜔 cos 2𝜔𝑡 = 𝑁𝐵0𝑆𝜔 cos 2𝜔𝑡. (168)

Ответ: 𝜀 = 𝐵0𝑁𝑆𝜔 cos(2𝜔𝑡).

№9

Условие: По длинному прямому соленоиду, радиус сечения которого 

𝑅 и плотностью намотки 𝑛, течёт ток, скорость изменения которого 

от времени равна 𝑖. Рассчитать вектор напряжённости вихревого элек

трического поля, как функцию расстояния 𝑟 от оси соленоида.

Решение:

Ответ:
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