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Электростатика. Постоянный ток.

№1

Система состоит из полусферы несущей равномерно распределённый заряд с 
поверхностной плотностью 𝜎 = 5 нКл/м2. Рассчитать модуль напряжённости 
электростатического поля, создаваемого полусферой в её центре.

Решение:
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Рис. 1: Полусфера.

В системе СИ: 𝜎 = 5 нКл/м2 = 5 ⋅ 10−9 Кл/м2.

В сферических координатах с центром в искомой точке. Зададим точку 
на сфере полярным углом 𝜃 ∈ [0, 𝜋

2 ] и азимутальным 𝜑 ∈ [0, 2𝜋]. Тогда 
поверхностный элемент сферы 𝑑𝑆 равен:

𝑑𝑆 = 𝑅2 sin 𝜃𝑑𝜃𝑑𝜑.

Элемент заряда 𝑑𝑞 равен:

𝑑𝑞 = 𝜎𝑑𝑆 = 𝜎𝑅2 sin 𝜃𝑑𝜃𝑑𝜑

Поле от элементарного заряда в центра по модулю равно:

𝑑𝐸 = 𝑘 𝑑𝑞
𝑅2 = 𝑘𝜎𝑅2 sin 𝜃𝑑𝜃𝑑𝜑

𝑅2 = 𝑘𝜎 sin 𝜃𝑑𝜃𝑑𝜑.

Расписав составляющие (так как поле направлено к центру, значение с 
минусом):

2



𝑑𝐸𝑥 = −𝑘𝜎 sin2 𝜃 cos 𝜑𝑑𝜃𝑑𝜑,
𝑑𝐸𝑦 = −𝑘𝜎 sin2 𝜃 sin 𝜑𝑑𝜃𝑑𝜑,
𝑑𝐸𝑧 = −𝑘𝜎 sin 𝜃 cos 𝜃𝑑𝜃𝑑𝜑

Проинтегрировав по всей полусфере, получим:

𝐸𝑥 = ∫
2𝜋

0
∫

𝜋
2

0
𝑑𝐸𝑥 = −𝜎𝑘 ∫

𝜋
2

0
sin2 𝜃𝑑𝜃 ∫

2𝜋

0
cos 𝜑𝑑𝜑.

Так как ∫2𝜋
0

cos 𝜑𝑑𝜑 = 0, то 𝐸𝑥 = 0. (Аналогично 𝐸𝑦 = 0). Остается только 𝑧
-компонента:

𝐸𝑧 = 𝐸 = ∫
2𝜋

0
∫

𝜋
2

0
𝑑𝐸𝑧 = −𝜎𝑘 ∫

2𝜋

0
𝑑𝜑 ∫

𝜋
2

0
sin 𝜃 cos 𝜃𝑑𝜃 = 𝑘𝜎 ⋅ (2𝜋) ⋅ 1

2
= 𝜎

4𝜀0
.

Подставив числа, получим:

𝐸 = 𝜎
4𝜀0

= 5 ⋅ 10−9

4 ⋅ 8.85 ⋅ 10−12 ≈ 141.2 В/м ≈ 0.14 кВ/м.

Ответ: 𝐸 ≈ 0.14 кВ/м.

№2

Система представляет собой область пространства заполненного зарядом 
с объёмной плотностью 𝜌 = 𝜌0 exp(−𝛼𝑟3), где 𝜌0 и 𝛼 – положительные 
постоянные, а 𝑟 – расстояние от центра системы. Найти модуль 
напряжённости электростатического поля, как функцию 𝑟.

Решение:
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Рис. 2: Область пространства.

По закону Гаусса:

∮
𝑆

⃗𝐸 ⋅ 𝑑 ⃗𝑆 = 𝑄вн

𝜀0

Система обладает сферической симметрией. Модуль 𝐸(𝑟) одинаков по всей 
сфере радиуса 𝑟, тогда (площадь поверхности сферы 4𝜋𝑟2):

∮
𝑆

⃗𝐸 ⋅ 𝑑 ⃗𝑆 = 𝐸(𝑟) ∮
𝑆

𝑑𝑆 = 𝐸(𝑟) ⋅ 𝑆 = 𝐸(𝑟) ⋅ 4𝜋𝑟2

𝐸(𝑟)4𝜋𝑟2 = 𝑄вн(𝑟)
𝜀0

⇒ 𝐸(𝑟) = 𝑄вн(𝑟)
4𝜋𝜀0𝑟2

Заряд внутри радиуса 𝑟:

𝑄вн(𝑟) = ∫
𝑉𝑟

𝜌(𝑟′)𝑑𝑉 = ∫
𝑟

0
𝜌(𝑟′)4𝜋𝑟′2𝑑𝑟′ = 4𝜋𝜌0 ∫

𝑟

0
𝑟′2𝑒(−𝛼𝑟′)3

𝑑𝑟′.

Пусть 𝑢 = 𝛼𝑟′3.
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𝑑𝑢 = 3𝛼𝑟′2𝑑𝑟′ ⇒ 𝑟′2𝑑𝑟′ = 𝑑𝑢
3𝛼

𝑄вн(𝑟) = 4𝜋𝜌0 ⋅ 1
3𝛼

∫
𝛼𝑟3

0
𝑒−𝑢𝑑𝑢 = 4𝜋𝜌0

3𝛼
(1 − 𝑒−𝛼𝑟3)

Подставим в закон Гаусса:

𝐸(𝑟) = 𝑄вн(𝑟)
4𝜋𝜀0𝑟2 =

4𝜋𝜌0
3𝛼 (1 − 𝑒(−𝛼𝑟3))

4𝜋𝜀0𝑟2 = 𝜌0
3𝜀0𝛼𝑟2 (1 − 𝑒−𝛼𝑟3)

Ответ: 𝐸(𝑟) = 𝜌0
3𝜀0𝛼𝑟2 (1 − exp(−𝛼𝑟3)).

№3

Система состоит из равномерно заряженного шара радиуса 𝑅 = 20 см. 
Рассчитать разность потенциалов между точками, лежащими на расстоянии 
𝑟1 = 1 см и 𝑟2 = 15 см от центра шара. Объёмная плотность заряда 𝜌 =
10 нКл/м3. Диэлектрическая проницаемость вещества из которого состоит 
шар 𝜀 = 1.

Решение:

x

y r1
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R

Рис. 3: Шар.

Для 𝑟 ≤ 𝑅 используем закон Гаусса. Заряд, заключенный в сфере, радиуса 𝑟:
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𝑄вн = 𝜌 ⋅ 4
3
𝜋𝑟3.

Поток через сферу радиуса 𝑟 равен:

∮ ⃗𝐸 ⋅ 𝑑 ⃗𝑆 = 𝐸(𝑟) ⋅ 4𝜋𝑟2 = 𝑄вн

𝜀0
.

Отсюда можно выразить 𝐸(𝑟):

𝐸(𝑟) = 𝑄вн

4𝜋𝜀0𝑟2 = 𝜌4
3 𝜋𝑟3

4𝜋𝜀0𝑟2 = 𝜌𝑟
3𝜀0

Потенциал определяется как:

𝜑(𝑟1) − 𝜑(𝑟2) = ∫
𝑟2

𝑟1

𝐸(𝑟)𝑑𝑟

Подставив 𝐸(𝑟) = 𝜌𝑟
3𝜀0

:

Δ𝜑 = 𝜑(𝑟1) − 𝜑(𝑟2) = ∫
𝑟2

𝑟1

𝜌𝑟
3𝜀0

𝑑𝑟 = 𝜌
6𝜀0

(𝑟2
2 − 𝑟2

1)

Подставив числа, получим:

Δ𝜑 = 10 ⋅ 10−9

6 ⋅ 8.85 ⋅ 10−12 (0.152 − 0.012) В ≈ 4.2 В.

Ответ: Δ𝜑 ≈ 4.2 B.

№4

Зазор между пластинами плоского конденсатора полностью плоская 
слюдяная пластинка (𝜀1 = 7) толщиной 𝑑1 = 2 мм, и слой парафина (𝜀1 =
2) толщиной 𝑑2 = 1 мм. Рассчитать модули напряжённости электрического 
поля в обоих диэлектриках, если разность потенциалов между пластинами 
𝑈 = 200В.

Решение:
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Рис. 4: Конденсатор.

При статическом поле в плоском конденсаторе нормальная компонента 
вектора электрической индукции 𝐷⃗ одинакова во всех слоях:

𝐷 = 𝜀0𝜀𝑟1𝐸1 = 𝜀0𝜀𝑟2𝐸2.

Отсюда получаем связь между полями:

𝜀𝑟1𝐸1 = 𝜀𝑟2𝐸2 ⇒ 𝐸1 = 𝜀𝑟2
𝜀𝑟1

𝐸2.

Общая разность потенциалов 𝑈  равна:

𝑈 = 𝐸1𝑑1 + 𝐸2𝑑2.

Подставив 𝐸1 = 𝜀𝑟2
𝜀𝑟1

𝐸2, получим:

𝑈 = 𝜀𝑟2
𝜀𝑟1

𝐸2𝑑1 + 𝐸2𝑑2 = 𝐸2(
𝜀𝑟2
𝜀𝑟1

𝑑1 + 𝑑2)

Выражая 𝐸2 и 𝐸1:

𝐸2 = 𝑈
𝜀𝑟2
𝜀𝑟1

𝑑1 + 𝑑2
,  𝐸1 = 𝜀𝑟2

𝜀𝑟1
𝐸2.

Подставим числа из условия:

𝐸1 ≈ 3.64 ⋅ 104 В/м ≈ 36.4 кВ/м, 𝐸2 ≈ 1.27 ⋅ 105 В/м ≈ 0.127 МВ/м.

Ответ: 𝐸1 ≈ 36 кВ/м, 𝐸1 ≈ 0.13 МВ/м.

№5

На расстоянии 𝑙 = 1.5 см от проводящей плоскости расположен точечный 
заряд 𝑞 = 100 мкКл. Рассчитайте работу, которую необходимо совершить 
против электрических сил, чтобы медленно удалить этот заряд от плоскости 
на бесконечность.
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Решение:

x

y

Рис. 5: Схема с проводящей плоскостью и зарядами.

В системе СИ: 𝑙 = 1.5 см = 0.015 м,  𝑞 = 100 мкКл = 1.0 ⋅ 10−4 Кл.

По закону сохранения энергии:

Δ𝐸𝐾 + Δ𝐸𝑃 = 𝐴тр + 𝐴вн

Так как мы удаляем заряд медленно, то Δ𝐸𝐾 = 0. Про трение ничего не 
сказано, поэтому 𝐴тр = 1. Тогда:

𝐴 = Δ𝐸𝑃 = 𝐸𝑃2 − 𝐸𝑃1

На бесконечности (𝐸𝑃2) равна нулю так как 𝑟 = ∞, и в формуле 𝐸𝑃 = 𝑘 𝑞
𝑟  

стоит в знаменателе.

Реальный заряд 𝑞 находится на расстоянии 𝑙 от плоскости, а мнимый заряд 
𝑞′ = −𝑞 находится на расстоянии 𝑙 по другую сторону плоскости. Тогда 
обозначим за 𝑟 = 2𝑙 = 0.03 м.

Потенциальная энергия взаимодействия двух зарядов 𝐸𝑃  равна:

𝐸𝑃 = 𝑘𝑞𝑞′

𝑟
= −𝑘𝑞2

2𝑙

Нужно учесть, что получившееся значение – работа по удалению не одного, 
а двух зарядов. Тогда поделим значение на 2.

Подставив числа, получим:
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𝐴 = 𝑞2

16𝜋𝜀0𝑙
= 104 ⋅ 10−12

16𝜋 ⋅ 8.85 ⋅ 10−12 ⋅ 1.5 ⋅ 10−2 ≈ 0.15 ⋅ 103 Дж

Ответ: 𝐴 ≈ 0.15 ⋅ 103 Дж.

№6

По прямому проводнику длина которого 𝑙 = 400 м течёт постоянный ток, сила 
которого 𝐼 = 10 А. Рассчитать суммарный импульс электронов в проводнике.

Решение:

Рис. 6: Проводник с током.

По формуле плотности тока:

𝑗 = 𝜌𝑈 , где 𝜌 = 𝑞
𝑙 ⋅ 𝑆

⇒ 𝑗 = 𝑞𝑈
𝑙𝑆

Так как 𝑗 = 𝐼
𝑆  по определению, то можно выразить заряд:

𝑗 = 𝐼
𝑆

= 𝑞𝑈
𝑙𝑆

⇒ 𝑞 = 𝐼𝑙
𝑈

Масса всех электронов равна произведению их количества на массу одного 
электрона:

𝑚 = 𝑛𝑒 ⋅ 𝑚𝑒 = 𝑞
𝑒
𝑚𝑒 = 𝐼𝑙

𝑈𝑒
𝑚𝑒

По формуле импульса:

𝑝 = 𝑚𝑈 = 𝐼𝑙𝑚𝑒
𝑒

Подставим числа из условия:

𝑝 = 10 ⋅ 400 ⋅ 9.1 ⋅ 10−31

1.6 ⋅ 10−19 ≈ 2.3 ⋅ 10−8.

Ответ: 𝑝 = 2.3 ⋅ 10−8 Н/с.

9



Магнитостатика. Закон электромагнитной индукции Фарадея.

№1

Замкнутый контур с током имеет вид прямоугольника с диагональю 𝑑 =
16 см, угол между диагоналями 𝛼 = 30°. Сила тока, протекающего по 
контуру 𝐼 = 5 A. Рассчитать модуль индукции магнитного поля в центре 
контура.

Решение:

Рис. 7: Прямоугольный контур с током и его центр.

В системе СИ: 𝑑 = 16 см = 0.16 м.

По принципу суперпозиции для магнитного поля:

𝐵⃗ = 𝐵⃗1 + 𝐵⃗2 + 𝐵⃗3 + 𝐵⃗4.

Так как все 𝐵⃗𝑖 сонаправлены, то 𝐵 = 2(𝐵1 + 𝐵2). По закону Био-Савара-
Лапласа:

𝐵 = 2(𝜇0𝐼
2𝜋

(
cos 𝜋−𝜑

2
𝑑
2 cos 𝜑

2
+

cos 𝜑
2

𝑑
2 sin 𝜑

2
)) =

= 𝜇0𝐼
𝜋

( 1
𝑑
2 sin 𝜑

2 cos 𝜑
2
) = 4𝜇0𝐼

𝜋𝑑 sin 𝜑

Подставив числа из условия, получим:

𝐵 = 4 ⋅ 4𝜋 ⋅ 10−7 ⋅ 5
𝜋 ⋅ 0.16 ⋅ sin 30°

≈ 0.1

Ответ: 𝐵 ≈ 0.1 мТл.

№2

Два бесконечных прямых параллельных проводника разделены расстоянием 
𝑑 = 20 см. По проводникам в противоположных направлениях текут токи 
𝐼1 = 𝐼2 = 10 А. Рассчитать модуль напряжённости магнитного поля в точке, 
равноудалённой от обоих проводников на расстояние 𝑎 = 20 см.
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Решение:

H

HH 21

Рис. 8: Два параллельных проводника с противоположными токами.

По формуле напряженности магнитного поля для прямого тока:

𝐻 = 2𝜋𝑟𝐼

Результирующее поле направлено вниз:

𝐻 = 2𝐼
2𝜋𝑟

cos 𝜋
3

= 𝐼
2𝜋𝑟

Подставив числа из условия, получим:

10
2𝜋 ⋅ 0.2

≈ 8 А/м.

Ответ: 𝐻 ≈ 8 А/м.

№3

По проводу бесконечной длины, имеющего форму цилиндра радиуса 𝑅 
течёт постоянный ток, плотность которого зависит от расстояния до центра 
провода как 𝑗 = 𝛼𝑟 ⃗𝑒𝑧. Рассчитать вектор магнитной индукции создаваемый 
током внутри и вне провода, как функцию 𝑟 (магнитная проницаемость всюду 
равна 1).

Решение:
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I

Рис. 9: Цилиндрический провод с током вдоль оси.

Для осесимметричного распределения удобно взять круговой контур радиуса 
𝑟, с центром на оси цилиндра. Интеграл по контуру:

∮ 𝐵⃗ ⋅ 𝑑 ⃗𝑙 = 𝐵𝜑(𝑟)(2𝜋𝑟)

Закон Ампера:

∮ 𝐵⃗ ⋅ 𝑑 ⃗𝑙 = 𝜇0𝐼вн(𝑟)

где 𝐼вн(𝑟) - суммарный ток, пронизывающий поверхность, ограниченную 
контуром.

Отсюда:

𝐵𝜑(𝑟) = 𝜇0
2𝜋𝑟

𝐼вн(𝑟)

Ток через круг радиуса 𝑟:

𝐼вн(𝑟) = ∬
𝑆𝑟

𝑗𝑧(𝑟′)𝑑𝑆 = ∫
𝑟

0
∫

2𝜋

0
(𝛼𝑟′)𝑟′𝑑𝜑𝑑𝑟′

𝐼вн(𝑟) = 𝛼 ⋅ 2𝜋 ∫
𝑟

0
𝑟′2𝑑𝑟′ = 𝛼 ⋅ 2𝜋 ⋅ 𝑟3

3
= 2𝜋𝛼𝑟3

3
.

Магнитная индукция внутри 𝑟 < 𝑅:

𝐵𝜑(𝑟) = 𝜇0
2𝜋𝑟

⋅ 2𝜋𝛼𝑟3

3
= 𝜇0𝛼𝑟2

3
.

Магнитная индукция снаружи 𝑟 > 𝑅:
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𝐼 = 𝐼вн(𝑅) = 2𝜋𝛼𝑅3

3
.

По закону Ампера для 𝑟 > 𝑅:

𝐵𝜑(𝑟) = 𝜇0𝐼
2𝜋𝑟

= 𝜇0
2𝜋𝑟

⋅ 2𝜋𝛼𝑅3

3
= 𝜇0𝛼𝑅3

3𝑟

Ответ: 𝐵⃗(𝑟 < 𝑅) = 𝜇0𝛼𝑟2

3 ⃗𝑒𝜑,  𝐵⃗(𝑟 > 𝑅) = 𝜇0𝛼𝑅3

3𝑟 ⃗𝑒𝜑.

№4

В однородное магнитное поле с магнитной индукцией 𝐵 = 0.4 Тл 
перпендикулярно полю с постоянной скоростью влетает заряженная частица. 
В течении 6 мкс включается постоянное электрическое поле напряжённостью 
𝐸 = 300 В/м сонаправленно магнитному полю. Рассчитать шаг винтовой 
траектории частицы после выключения электрического поля.

Решение: По формуле силы Лоренца:

⃗𝐹 = 𝑞( ⃗𝐸 + ⃗𝑣 × 𝐵⃗)

До включения электрического поля:

⃗𝐸 = 0,   ⃗𝐹 = 𝑞( ⃗𝑣 × 𝐵⃗)

Частица движется по окружности

𝐹маг = 𝑞𝑣𝐵.

Сила Лоренца равна центростремительной силе:

𝑞𝑣𝐵 = 𝑚𝑣2

𝑅
⇒ 𝑅 = 𝑚𝑣

𝑞𝐵

Угловая частота:

𝜔 = 𝑣
𝑅

= 𝑞𝐵
𝑚

Когда включается электрическое поле вдоль магнитного поля, на частицу 
вдоль 𝐵 действует 𝐹 = 𝑞𝐸. Соответственно вдоль оси 𝐵 ускорение 𝑎 = 𝑞𝐸

𝑚 .

За время Δ𝑡 скорость вдоль оси становится:

𝑣 = 𝑎Δ𝑡 = 𝑞𝐸
𝑚

Δ𝑡

После выключения электрического поля частица летит в магнитном поле 
с постоянной перпендикулярной скоростью и параллельной, то есть по 
винтовой траектории.
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Расстояние за один оборот:

ℎ = 𝑣𝑇 ,

где 𝑇 = 2𝜋
𝜔 = 2𝜋𝑚

𝑞𝐵  - период кругового движения.

Подставим:

ℎ = 𝑣𝑇 = 𝑞𝐸
𝑚

Δ𝑡 ⋅ 2𝜋𝑚
𝑞𝐵

= 2𝜋𝐸Δ𝑡
𝐵

Подставим числа:

ℎ = 2𝜋 ⋅ 300 В/м ⋅ 6 ⋅ 10−6 с

0.4 Тл
≈ 0.28 м.

Ответ: ℎ = 0.28 м.

№5

Квадратная рамка со стороной 𝑎 = 70 см помещена в магнитное поле так, 
что нормаль к рамке составляет угол 𝛼 = 45° с направлением магнитного 
поля. Индукция магнитного поля меняется по закону 𝐵 = 𝐵0 cos 𝜔𝑡, где 𝐵0 =
0.2 Тл, 𝜔 = 6 с−1. Рассчитать ЭДС индукции, возникающей в рамке в момент 
времени 𝑡 = 3 с.

Решение:
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Рис. 10: Квадратная рамка в переменном магнитном поле.

По формуле магнитного потока через плоскость:

Φ = 𝐵𝑆 cos 𝛼

Площадь рамки:

𝑆 = 𝑎2

Так как 𝐵 = 𝐵0 cos(𝜔𝑡):

Φ = 𝐵0𝑎2 cos 𝛽 cos(𝜔𝑡)

По закону Фарадея:

ℰ︀ = −Φ′(𝑡) = 𝐵0𝑎2𝜔 cos 𝛽 sin 𝜔𝑡

Подставив числа из условия, получим:

ℰ︀ = 0.2 ⋅ 0.72 ⋅ 6 ⋅ cos(45°) ⋅ sin(6 ⋅ 3) ≈ −0.31 B.

Ответ: 𝜀 = −0.31 В.

№6

Плотность витков в катушке 𝑛 = 25 см−1. Рассчитать объёмную плотность 
энергии магнитного поля в катушке при токе 𝐼 = 2 А.
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Решение:

Рис. 11: Катушка с током и однородным магнитным полем внутри.

В системе СИ: 𝑛 = 25 см−1 = 2500 м−1.

По закону Ампера:

∮ 𝐵⃗ ⋅ 𝑑 ⃗𝑙 = 𝜇0𝐼внутри

Возьмем прямоугольный контур. Одна сторона внутри катушки длиной 
𝑙внутри, другая снаружи. Магнитное поле внутри 𝐵⃗ ⋅ 𝑑 ⃗𝑙 = 𝐵𝑙внутри. Ток, 
охваченный контуром: 𝐼внутри = 𝐼 ⋅ 𝑁охваченных витков = 𝐼𝑛𝑙внутри. Подставив в 
закон Ампера, получим:

𝐵𝑙внутри = 𝜇0(𝑛𝐼𝑙внутри) ⇒ 𝐵 = 𝜇0𝑛𝐼.

Энергия магнитного поля катушки:

𝑊 = 1
2
𝐿𝐼2,

где 𝐿 - индуктивность катушки.

По определению индуктивности:

𝐿 = Φ
𝐼

,

где Φ - магнитный поток через катушку.

Магнитный поток через все витки равен:

Φ = 𝑁 ⋅ 𝐵 ⋅ 𝑆,
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где 𝑁  - число витков, 𝑆 - площадь поперечного сечения, 𝐵 - магнитное поле 
внутри катушки.

𝐿 = 𝑁𝐵𝑆
𝐼

.

Объем катушки 𝑉 = 𝑆𝑙, число витков 𝑁 = 𝑛𝑙. Подставим:

𝐿 = 𝑛𝑙𝐵𝑆
𝐼

= 𝐵𝑛𝑆𝑙
𝐼

.

Тогда энергия равна:

𝑊 = 1
2
𝐿𝐼2 = 1

2
𝐵𝑛𝑆𝑙

𝐼
𝐼2 = 1

2
𝐵𝑛𝐼𝑆𝑙

Объемная плотность энергии 𝑤 равна:

𝑤 = 𝑊
𝑉

=
1
2𝐵𝑛𝐼𝑆𝑙

𝑆𝑙
= 1

2
𝐵𝑛𝐼

Подставим 𝐵 = 𝜇0𝑛𝐼 :

𝑤 = 1
2
(𝜇0𝑛𝐼)𝑛𝐼 = 1

2
𝜇0𝑛2𝐼2

Подставим числа:

𝑤 = 1
2
4𝜋 ⋅ 10−7 ⋅ (2500)2 ⋅ 22 = 2𝜋 ⋅ 10−7 ⋅ 6.25 ⋅ 106 ⋅ 4 ≈ 16 Дж/м3

Ответ: 𝜔 ≈ 16 Дж/м3.
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