
Электромагнетизм

Электростатика

Q: 1. Что такое электрический заряд?

A: Электрический заряд - это физическая скалярная величина, показывающая способность 

тел быть источником электромагнитных полей и принимать участие в электромагнитном 

взаимодействии. Минимальная величина электрического заряда 𝑒 (т.е. элементарный заряд) 

приблизительно равна 1.6 ⋅ 10−19 Кл (Кл - кулон). Такими зарядами обладают, например, 

электрон и протон −𝑒 и +𝑒. Заряд любого тела можно представить в виде: 𝑞 = ±𝑍𝑒, где 𝑍 - 

целое число.

Q: 2. Сформулируйте закон Кулона.

A: Закон взаимодействия неподвижных точечных зарядов был установлен 

экспериментально Шарлем Огюстеном де Кулоном в 1785 году. Этот закон может быть 

записан в виде формулы:

⃗𝐹12 = 𝑘 𝑞1𝑞2
| ⃗𝑟12|3

⃗𝑟12,

где ⃗𝐹12 - сила, действующая со стороны первого заряда на второй; ⃗𝑟12 - вектор, 

направленный по прямой, соединяющий заряды в направлении от первого ко второму; 

𝑞1, 𝑞2 - величины взаимодействующих зарядов с учетом знаков; 𝑘 - коэффициент 

пропорциональности, зависящий от выбранной системы единиц.

В системе SI: 𝑘 = 1
4𝜋𝜀0

≈ 9 ⋅ 109 м/Ф (Ф - фарад). Величина 𝜀0 ≈ 0.885 ⋅ 10−11 Ф/м называется 

электрической постоянной.

Q: 3. Дайте определение напряженности электрического поля.

A: Силовой характеристикой электрического поля является напряженность ⃗𝐸 = ⃗𝐸( ⃗𝑟). Для 

определения напряженности в некоторой области пространства следует поместить в каждую 

точку этой области с радиус-вектором ⃗𝑟 пробный заряд 𝑞′. Тогда ⃗𝐸( ⃗𝑟) определяется по 

формуле:

⃗𝐸( ⃗𝑟) =
⃗𝐹 ( ⃗𝑟)
𝑞′

где ⃗𝐹 ( ⃗𝑟) - сила, действующая на пробный заряд. Она зависит от 𝑞′. Если 𝑞′ велико, то при 

внесении заряда 𝑞′ будут соответственно изменяться положения зарядов, создающих поле 
⃗𝐸. Но если 𝑞′ достаточно мало, то искажение поля будет незначительным и ⃗𝐸( ⃗𝑟), 

определяемое по написанной выше формуле, перестает зависеть от 𝑞′ - становится 

характеристикой невозмущенного поля.

По размерности [𝐸] = В/м (вольт/метр), но его можно измерять и в единицах Н/Кл 

(ньютон/кулон).

Q: 4. По какой формуле вычисляется напряженность электрического поля точечного заряда?

A: Из определения напряжения электрического поля можно получить выражение для поля 

точечного заряда (для напряженности в произвольной точке). Для этого заменяем в законе 

Кулона: 𝑞1 = 𝑞,  𝑞2 = 𝑞′ и получим:
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⃗𝐸 = 𝑘 𝑞
𝑟2 ⋅ ⃗𝑟

𝑟
.

Q: 5. Сформулируйте принцип суперпозиции для вектора ⃗𝐸.

A: Из свойства электрического поля (независимость взаимодействий зарядов) следует 

принцип суперпозиции (наложения) электрических полей: ⃗𝐸( ⃗𝑟) = ∑ ⃗𝐸𝑖( ⃗𝑟), где ⃗𝐸𝑖( ⃗𝑟) - 
напряженность в точке ⃗𝑟, создаваемая 𝑖-й частью системы зарядов назависимо от наличия 

других частей. Для системы точечных зарядов формула выше переходит в

⃗𝐸 = 𝑘 ∑ 𝑞𝑖
𝑟2
𝑖

⋅ ⃗𝑟𝑖
𝑟𝑖

где ⃗𝑟𝑖 - радиус-вектор, проведенный из точки нахождения заряда в интересующую нас 

точку.

Q: 6. Дайте определение потока вектора ⃗𝐸.

A: Поток вектора ⃗𝐸. Для удобства представим, что густота силовых линий равна 𝐸. Тогда 

число линий, пронизывающих площадку 𝑑𝑆 (см. рис.) с нормалью 𝑛⃗ равна 𝐸𝑑𝑆 cos 𝛼. Это 

число равно потоку 𝑑Φ вектора ⃗𝐸 сквозь площадку 𝑑𝑆.

Если ввести вектор элеметнарной площадки 𝑑 ⃗𝑆 = 𝑛̂𝑑𝑆, то поток можно представить в 

форме: 𝑑Φ = ⃗𝐸𝑑 ⃗𝑆 = 𝐸𝑛𝑑𝑆, где 𝐸𝑛 - проекция вектора ⃗𝐸 на нормаль 𝑛⃗. Для отдельной 

площадки 𝑛⃗ определено неоднозначно (2 варианта), но если 𝑑𝑆 принадлежит замкнутой 

поверхности, то, как правило, вектор нормали 𝑛⃗ направляют наружу объема, охватываемого 

поверхностью. Полный поток, по его смыслу, равен

Φ = ∫
𝑆

⃗𝐸𝑑 ⃗𝑆.

Q: 7. Сформулируйте теорему Гаусса в интегральной форме.

A: Теорема Гаусса:

∯
𝑆

⃗𝐸𝑑 ⃗𝑆 =
𝑞внутр

𝜀0

Поток вектора ⃗𝐸 сквозь замкнутую поверхность равен, с точностью до множителя 1
𝜀0

, 

алгебраической сумме зарядов 𝑞внутр, находящихся внутри этой поверхности.

Если заряд распределен непрерывно, то при вычислении 𝑞внутр сумма заменяется 

интегралом по объему, поверхности или линии, которые попали внутрь поверхности, 

соответственно: ∫ 𝜌𝑑𝑉 ,  ∫ 𝜎𝑑𝑆,  ∫ 𝜆𝑑𝑙.

Q: 8. Сформулируйте теорему Гаусса в дифференциальной форме.

A: Пренебрежем дискретностью заряда, считая его распределенным в пространстве с 

плотностью 𝜌 = 𝜌( ⃗𝑟). В этом случае теорема Гаусса имеет следующий вид:

∯
𝑆

⃗𝐸𝑑 ⃗𝑆 = 1
𝜀0

∫
𝑉

𝜌𝑑𝑉 .
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Интеграл по поверхности, можно с помощью математической теоремы Остроградского-

Гаусса преобразовать к форме

∮ ⃗𝐸𝑑 ⃗𝑆 = ∫
𝑉

div ⃗𝐸𝑑𝑉 .

Так как это справедливо для любых по форме и величине объемов, то из сравнения 

интегралов, представленных выше, следует

div ⃗𝐸 = 𝜌
𝜀0

.

Q: 9. В чем заключается физический смысл 𝑑𝑖𝑣 ⃗𝐸?

A: Дивергенция div ⃗𝐸 является скалярной величиной. Формула вычисления div ⃗𝐸 в разных 

системах координат выглядит по-разному. В произвольной системе координат div ⃗𝐸 (это 

справедливо для любого векторного поля) определяется как

div ⃗𝐸 = lim
𝑉 →0

1
𝑉

∯ ⃗𝐸𝑑 ⃗𝑆

В декартовых координатах:

div ⃗𝐸 = 𝜕𝐸𝑥
𝜕𝑥

+
𝜕𝐸𝑦

𝜕𝑦
+ 𝜕𝐸𝑧

𝜕𝑧

Если использовать векторный дифференциальный оператор ∇⃗ (“набла”), который имеет вид 

∇ = 𝑖̂ 𝜕
𝜕𝑥 + 𝑗 𝜕

𝜕𝑦 + 𝑘̂ 𝜕
𝜕𝑧 , то div ⃗𝐸 можно представить в виде скалярного “произведения”: 

div ⃗𝐸 = ∇⃗ ⋅ ⃗𝐸.

Q: 10. Дайте определение циркуляции вектора ⃗𝐸.

A: Из механики известно, что любое стационарное поле центральных сил является 

консервативным, т.е. работа сил этого поля не зависит от формы пути, а зависит только от 

положения его начальной и конечной точки. Именно таким свойством обладает 

электростатическое поле - поле, образованное системой неподвижных зарядов. Если в 

качестве пробного заряда, переносимого из точки 1 заданного поля ⃗𝐸 в точку 2, взять 

единичный положительный заряд, то элементарная работа сил поля на перемещении 𝑑 ⃗𝑙 
равна ⃗𝐸𝑑 ⃗𝑙, а вся работа сил поля на этом пути: ∫2

1
⃗𝐸𝑑 ⃗𝑙.

Этот интеграл берется по некоторой линии (пути), поэтому его называют линейным. 

Интеграл по замкнутому пути называют циркуляцией вектора ⃗𝐸 и обозначают ∮.

Q: 11. Сформулируйте теорему о циркуляции вектора ⃗𝐸?

A: Циркуляция вектора ⃗𝐸 в любом электростатическом поле равна нулю, т.е.

∮ ⃗𝐸𝑑 ⃗𝑙 = 0

Это утверждение и называют теоремой о циркуляции вектора ⃗𝐸.

Q: 12. Дайте определение потенциального поля.
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A: Поле, обладающее этим свойством, называют потенциальным. Значит, любое 

электростатическо поле является потенциальным.

Q: 13. Докажите, что линии электростатического поля ⃗𝐸 не могут быть замкнутыми.

A: Теорема о циркуляции вектора ⃗𝐸 позволяет сделать ряд важных выводов, практически не 

прибегая к расчетам.

Пример 1. Линии электростатического поля ⃗𝐸 не могут быть замкнутыми.

Если это не так и какая-то линия вектора ⃗𝐸 замкнута, то, взяв циркуляцию вектора ⃗𝐸 вдоль 

этой линии, мы сразу же придем к противоречию с теоремой, т.к. вдоль силовой линии 
⃗𝐸𝑑 ⃗𝑟 > 0. Значит, действительно, в электростатическом поле замкнутых линий вектора ⃗𝐸 не 

существует: линии начинаются на положительных зарядах и заканчиваются на 

отрицательных (или уходят в бесконечность).

Q: 14. По какой формуле можно определить потенциальную энергию системы точечных 

зарядов?

A: Электростатическое поле является потенциальным, т.е. работа его сил по перемещению 

заряда не зависит от форму пути. Работа сил поля при перемещении точечного заряда 𝑞 из 

точки 1 в точку 2 равна убыли его потенциальной энергии:

𝐴 = 𝑊1 − 𝑊2.

Потенциальная энергия заряда 𝑞 в системе зарядов 𝑞𝑖:

𝑊 = 𝑘 ∑
𝑖

𝑞 ⋅ 𝑞𝑖
𝑟𝑖

где 𝑟𝑖 - расстояние между 𝑞 и 𝑞𝑖.

Полная потенциальная энергия системы точечных зарядов:

𝑊 = 𝑘
2

∑
𝑖

∑
𝑗≠𝑖

𝑞𝑖 ⋅ 𝑞𝑗

𝑟𝑖𝑗
,

где 𝑟𝑖𝑗 - расстояние между зарядами 𝑞𝑖 и 𝑞𝑗.

Q: 15. Дайте определение потенциалов.

A: Энергетическая характеристика электростатического поля - потенциал:

𝜑( ⃗𝑟) = 𝑊( ⃗𝑟)
𝑞

.

По физическому смыслу потенциал численно равен энергии единичного положительного 

заряда в данной точке. Единицей потенциала является вольт (В).

Потенциал поля точечного заряда:

𝜑 = 𝑞
4𝜋𝜀0𝑟

Потенциал на бесконечности (𝑟 → ∞) условно полагают равным нулю.
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Q: 16. Чему равен потенциал системы точечных зарядов?

A: Потенциал системы неподвижных точечных зарядов:

𝜑 = 1
4𝜋𝜀0

∑
𝑖

𝑞𝑖
𝑟𝑖

где 𝑟𝑖 - расстояние от точечного заряда 𝑞𝑖 до интересующей нас точки поля.

Q: 17. Чему равен потенциал в случае непрерывного распределения заряда плотностью 𝜌?

A: Если заряды, образующие систему, распределены непрерывно, то формула для 

потенциала имеет вид:

𝜑 = 1
4𝜋𝜀0

∫ 𝜌𝑑𝑉
𝑟

,

где 𝜌 - объемная плотность заряда в месте нахождения объема 𝑑𝑉 . Интегрирование 

проводится или по всему пространству, или по той его части, которая содержит заряды.

Если заряды расположены только на поверхности 𝑆, то

𝜑 = 1
4𝜋𝜀0

∫ 𝜎𝑑𝑆
𝑟

где 𝜎 - поверхностная плотность заряда, 𝑑𝑆 - элемент поверхности 𝑆. Аналогичное 

выражение будет и в том случае, когда заряды распределены линейно.

Потенциал поля можно также определить следующим образом:

𝜑1 − 𝜑2 = ∫
2

1

⃗𝐸𝑑 ⃗𝑙,

где 𝜑1, 𝜑2 - значения потенциала в точках 1 и 2.

Работа сил поля при перемещении точечного заряда из точки 1 в точку 2:

𝐴1−2 = 𝑞(𝜑1 − 𝜑2)

Q: 18. Сформулировать теорему о циркуляции поля ⃗𝐸 в дифференциальной форме.

A: Теорема о циркуляции поля ⃗𝐸 в дифференциальном виде:

rot ⃗𝐸 = 0

Вид ротора ⃗𝐸 зависит от выбранной системы координат. В жекартовых координатах:

rot ⃗𝐸 = [∇, ⃗𝐸] =

|


 𝑖̂

𝜕
𝜕𝑥
𝐸𝑥

𝑗
𝜕
𝜕𝑦
𝐸𝑦

𝑘̂
𝜕
𝜕𝑧
𝐸𝑧|





Q: 19. Как связаны между собой напряженность электростатического поля ⃗𝐸 и его потенциал?

A: ⃗𝐸 = −grad 𝜑 - с помощью этой формулы устанавливается взаимно однозначная связь 

между силовым полем ⃗𝐸( ⃗𝑟) и энергетическим потенциалом 𝜑( ⃗𝑟) - по одному из них можно 

найти другое.
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Оператор градиента grad 𝜑 по величине равен производной 𝜑 по перемещению в 

направлении наибольшего роста функции.

Явное выражение grad 𝜑 зависит от выбранной системы координат. В декартовой системе 

координат:

⃗𝐸 = −grad 𝜑 = −∇⃗𝜑 = −(𝑖̂𝜕𝜑
𝜕𝑥

+ 𝑗𝜕𝜑
𝜕𝑦

+ 𝑘̂𝜕𝜑
𝜕𝑧

)

Пример. Надо найти ⃗𝐸( ⃗𝑟) поля, потенциал которого равен:

1. 𝜑(𝑥, 𝑦) = −𝑎𝑥𝑦, где 𝑎 некоторая скалярная константа;

2. 𝜑( ⃗𝑟) = − ⃗𝑎 ⃗𝑟, где ⃗𝑎 некоторый постоянный вектор.

Решение.

1. ⃗𝐸 = 𝑎(̂𝑖𝑦 + 𝑗𝑥).
2. ⃗𝐸 = ∇( ⃗𝑎 ⃗𝑟) = ∇(𝑎𝑥𝑥 + 𝑎𝑦𝑦 + 𝑎𝑧𝑧) = 𝑖̂𝑎𝑥 + 𝑗𝑎𝑦 + 𝑘̂𝑎𝑧 = ⃗𝑎.

Q: 20. Что такое эквипотенциальная поверхность?

A: Электрическое поле можно наглядно представить не только с помощью силовых линий, 

но и эквипотенциальных поверхностей 𝜑( ⃗𝑟) = Const. Качественно легко по одной картине 

построить другую. Силовые линии перпендикулярны эквипотенциальным поверхностям.

Q: 21. Как расположены друг относительно друга эквипотенциальные поверхности и силовые 

линии поля ⃗𝐸?

A: Если проводить эквипотенциальные поверхности так, чтобы разность потенциалов для 

двух соседних поверхностей была одинаковой, то расстояние между ними будут обратно 

пропорционально величине напряженности. На рисунке представлена примерная 

двумерная картина электрического поля: пунктиром обозначены сечения 

эквипотенциальных поверхностей, сплошными линиями - силовые линии.

Q: 22. Дайте определение электрического диполя.

A: Система из двух точечных зарядов равных по модулю и противоположных по знаку 

(−𝑞, +𝑞), расстояние между которыми 𝑙 называется электрическим диполем.

Q: 23. Что такое электрический дипольный момент?

A: Дипольный момент арактеризуется электрическим дипольным моментом:

⃗𝑝 = 𝑞 ⃗𝑙,

где вектор ⃗𝑙 проводится от −𝑞 до +𝑞.

Потенциал диполя в точке, распололженной на большом расстоянии от него (𝑟 ≫ 𝑙), имеет 

вид:

𝜑(𝑟, 𝜃) = 𝑘𝑝 cos 𝜃
𝑟2 = 𝑘 ⃗𝑝 ⃗𝑟

𝑟3 .

В полярных координатах (𝑟, 𝜃) компоненты вектора напряженности электрического поля 

диполя записываются следующим образом:
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𝐸𝑟 = −𝜕𝜑
𝜕𝑟

= 𝑘2𝑝 cos 𝜃
𝑟3

𝐸𝜃 = − 𝜕𝜑
𝑟𝜕𝜃

= 𝑘𝑝 sin 𝜃
𝑟3

𝐸 = √𝐸2
𝑟 + 𝐸2

𝜃 = 𝑘 𝑝
𝑟3

√1 + 3 cos2 𝜃

Потенциальная энергия диполя в электрическом поле:

𝑊 = − ⃗𝑝 ⋅ ⃗𝐸 = −𝑝𝐸(𝑟) cos 𝛼,

где 𝛼 - угол между ⃗𝐸( ⃗𝑟) и ⃗𝑝.

Q: 24. Как найти момент сил, действующих на диполь?

A: В однородном электрическом поле энергия 𝑊  изменяется за счет изменения угла 𝛼, при 

этом элементарная работа сил поля при повороте диполя равна: 𝑑𝐴 = 𝑀𝛼𝑑𝛼 = −𝑑𝑊 , где 
𝑀𝛼 = [ ⃗𝑝 × ⃗𝐸] - момент сил, действующих на диполь:

𝑀𝛼 = −𝜕𝑊
𝜕𝛼

= −𝑝𝐸 sin 𝛼

Электрическое поле стремится развернуть диполь по полю ( ⃗𝑝 ↑↑ ⃗𝐸). В общем случае ⃗𝐸 =
⃗𝐸( ⃗𝑟) на диполь будет действовать сила, проекция которой на произвольное направление 𝑂𝑥 

будет равна

𝐹𝑥 = 𝑝𝑥
𝜕𝐸𝑥
𝜕𝑥

+ 𝑝𝑦
𝜕𝐸𝑦

𝜕𝑥
+ 𝑝𝑧

𝜕𝐸𝑧
𝜕𝑥

Если диполь развернется по полю (cos 𝛼 = 1), то в неоднородном поле он будет втягиваться в 

область более сильного поля.

Q: 25. Какие молекулы называют полярными? Неполярными?

A: Диэлектрики (изоляторы) - это вещества, которые практически не проводят 

электрический ток. В них отсутствуют свободные заряды, которые могли бы перемещаться 

на макроскопические расстояния.

Диэлектрики состоят либо из нейтральных молекул, либо из заряженнных ионов, которые 

находятся в узлах кристаллических решеток (ионные кристалы). Положительно или 

отрицательно заряженные ионы образуют свои одинаковые решетки, смещенные друг 

относительно друга. Сами молекулы могут быть полярными и неполярными. Полярные 

молекулы обладают собственными дипольными моментами ⃗𝑝, т.к. у них смещены центры 

“тяжести” положительного и отрицательного зарядов. У неполярных молекул эти центры 

“тяжести” совпадают. Положение центров “тяжести” в системе точечных зарядов 𝑞𝑖 можно 

следующим образом:

⃗𝑟+ =
∑𝑁

𝑖=1 𝑞+
𝑖 ⃗𝑟𝑖

∑𝑁
𝑖=1 𝑞+

𝑖
  ⃗𝑟− =

∑𝑁
𝑖=1 𝑞−

𝑖 ⃗𝑟𝑖

∑𝑁
𝑖=1 𝑞−

𝑖

Q: 26. Опишите процесс поляризации диэлектрика.
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A: Под воздействием внешнего электрического поля диэлектрик поляризуется. Если 

диэлектрик состоит из неполярных молекул, то в каждой молекуле положительный заряд 

смещается по полю, отрицательный - против поля и молекула приобретает дипольный 

момент, ориентированный по полю. В диэлектрике, состоящем из полярных молекул, 

дипольные моменты из-за теплового движения без внешнего поля ориентированы 

хаотически. Под действием внешнего поля они приобретают выделенное направление по 

полю - средний дипольный момент будет теперь отличен от нуля и ориентирован по полю. 

В случае ионных кристалов смещаются подрешетки, что приводит тоже к появлению внутри 

диэлектрика отличного от нуля среднего дипольного момента. Несмотря на различную 

природу диэлектрика в значительной степени они ведут себя одинаково - под действием 

внешнего поля внутри диэлектрика каждая “средняя молекула” приобретает дипольный 

момент, ориентированный по полю. Поэтому, рассматривая общие проявления 

поляризации, можно не конкретизировать вид диэлектрика и даже, для удобства 

представления предполагать, что мы имеем дело с диэлектриком, состоящим из 

неполярных молекул.

Q: 27. Какие заряды называют связанными? Сторонними?

A: Поляризация диэлектрика сопровождается появлением нескомпенсированных зарядов 

(связанных). Они могут появляться как на поверхности, так и внутри диэлектрика. Их чаще 

всего отмечают штрихом (𝑞′, 𝜌′, 𝜎′).

Заряды, которые не входят в состав молекул диэлектрика называют сторонними (иногда их 

называют свободными).

Поле в диэлектрике. Под полем в диэлектрике ⃗𝐸 понимают суперпозицию поля сторонних 

зарядов ⃗𝐸0 и усредненного поля связанных зарядов ⃗𝐸′ : ⃗𝐸 = ⃗𝐸0 + ⃗𝐸′.

Q: 28. Дайте определение поляризованности ⃗𝑃 .

A: Величиной, характеризующей степень поляризации диэлектрика, называют дипольный 

момент, усредненный по физически бесконечно малому объему Δ𝑉 , т.е. такому объему, 

который на макроуровне стремится к нулю, но фактически содержит еще достаточно много 

молекул. Эта величина является функцией точки внутри Δ𝑉  (а Δ𝑉 → 0) и называется 

поляризованностью ⃗𝑃 . По определению

⃗𝑃 = 1
Δ𝑉

∑
𝑖

⃗𝑝𝑖,

где суммируются дипольные моменты всех молекул, находящихся в объеме Δ𝑉 . Данную 

формулу можно представить в виде

⃗𝑃 = 𝑛⟨ ⃗𝑝⟩

где 𝑛 = Δ𝑁
Δ𝑉  - концентрация молекул с дипольным моментом. Средний дипольный момент 

одной молекулы

⟨ ⃗𝑝⟩ =
∑𝑖 ⃗𝑝𝑖

Δ𝑁
.

Единицы измерения поляризованности в SI: Кл
м2 .
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Q: 29. Что такое диэлектрическая восприимчивость вещества?

A: Связь между 𝑃  и ⃗𝐸. Для широкого класса диэлектриков и не слишком сильных полей ⃗𝑃  

зависит линейно от ⃗𝐸 : ⃗𝑃 = 𝜒𝜀0 ⃗𝐸, где 𝜒 - безразмерная величина, которая называется 

диэлектрической восприимчивостью вещества. В общем случае 𝜒 является тензором, а 

для изотропного вещества 𝜒 постоянная величина и, как видно из вывода, 𝜒 > 0.

Q: 30. Дайте определение вектора 𝐷⃗.

A: Источником поля ⃗𝐸 являются все заряды - сторонние и связанные, поэтому при наличии 

диэлектриков теорема Гаусса будет иметь вид

∯
𝑆

𝜀0 ⃗𝐸 𝑑 ⃗𝑆 = (𝑞 + 𝑞′)
внутр

,

где 𝑞 и 𝑞′ - сторонние и связанные заряды, находящиеся внутри поверхности 

интегрирования 𝑆.

Если сторонние 𝑞 заданы, то связанные 𝑞′ определяются неизвестным полем ⃗𝐸. Формулу 

выше можно сделать более полезной для применения, если подставить заряд 𝑞′, 

выраженный через ⃗𝑃

∮ ⃗𝑃  𝑑 ⃗𝑆 = −𝑞′

Получим:

∯
𝑆
(𝜀0 ⃗𝐸 + ⃗𝑃) 𝑑 ⃗𝑆 = 𝑞внутр

Введем вспомогательный вектор 𝐷⃗, который называют электрической индукцией (или 

электрическим смещением):

𝐷⃗ = 𝜀0 ⃗𝐸 + ⃗𝑃 .

Q: 31. Интегральная форма теоремы Гаусса для вектора 𝐷⃗.

A: Вектор 𝐷⃗ удовлетворяет теореме Гаусса для вектора 𝐷⃗^

∯
𝑆

𝐷⃗ 𝑑 ⃗𝑆 = 𝑞внутр,

то есть поток вектора 𝐷⃗ определяется только сторонними зарядами. Это существенно 

упрощает задачу определения поля - можно сначала найти 𝐷⃗, а потом уж ⃗𝐸 и ⃗𝑃 .

Следуют подчеркнуть, что 𝐷⃗ объединяет существенно различные величины 𝜀0 ⃗𝐸 и ⃗𝑃 , 

поэтому он не имеет глубокого физического смысла, но очень полезен для исследования 

электрических полей при наличии диэлектриков: тем более что соотношения выше самые 

общие - применимы к любым диэлектрикам.

Единицы измерения у 𝐷⃗ такие же, как у ⃗𝑃  - Кл
м2 .

Q: 32. Дифференциальная форма теоремы Гаусса для вектора 𝐷⃗.
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A: В дифференциальном виде теорема Гаусса для вектора 𝐷⃗ представляется 

дифференциальном уравнении

div 𝐷 = 𝜌,

т.е. дивергенция поля вектора 𝐷⃗ равна объемной плотности сторонних зарядов в той же 

точке.

Q: 33. Какие диэлектрики называют изотропными?

A:

Q: 34. Как связаны между собой ⃗𝑃  и ⃗𝐸 в изотропных диэлектриках?

A: В изотропных диэлектриках в не слишком сильных полях связь между ⃗𝑃  и ⃗𝐸 линейна:

⃗𝑃 = 𝜒𝜀0 ⃗𝐸

где 𝜒 > 0 - постоянная величина, называемая диэлектрической восприимчивостью, при 

этом векторы ⃗𝐸, ⃗𝑃  и 𝐷⃗ коллинеарны. В анизотропных диэлектриках 𝜒 является тензорной 

величиной и в общем случае условие коллинеарности нарушается. Для изотропных 

диэлектриков 𝐷⃗ = 𝜀0(1 + 𝜒) ⃗𝐸 или 𝐷⃗ = 𝜀0𝜀 ⃗𝐸, где 𝜀 - диэлектрическая проницаемость 

вещества, 𝜀 = 1 + 𝜒,  𝜀 > 1.

Поле вектора 𝐷⃗ (так же как и вектора ⃗𝐸) можно изображать с помощью линий вектора 𝐷⃗. 

Отличие же состоит в том, что линии ⃗𝐸 начинаются и оканчиваются как на сторонних, так и 

на связанных зарядах, а линии вектора 𝐷⃗ начинаются и заканчиваются только на сторонних 

зарядах.

Q: 35. Как связаны между собой 𝐷⃗ и ⃗𝐸 в изотропных диэлектриках?

A:

Q: 36. Докажите, что внутри проводника, внесенного во внешнее электрическое поле, 

отсутствуют избыточные заряды.

A:

Q: 37. Чему равна напряженность электрического поля у поверхности проводника?

A:

Q: 38. Дайте определение емкости уединенного проводника.

A: Величина 𝐶 = 𝑞
𝜑  называется электроемкостью (сокращенно емкостью) уединенного 

проводника (т.е. проводника, удаленного от других проводников, тел и зарядов), где 𝑞 заряд 

прводника, 𝜑 - его потенциал. Единицей измерения электрической емкости является фарад 

(Φ = Кл
В

).

Уединенные проводники обладают малой емкостью - на них невозможно накопить большой 

заряд и связанную с ним энергию. Кроме того их емкость будет изменяться про изменении 

окружающей среды, т.к. при приближении других проводников с индуцированными 
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зарядами изменятся окружающее поле и потенциал первоначально уединенного 

проводника, а следовательно и емкость проводника.

Q: 39. Что такое конденсатор?

A: Стабилизировать емкость и существенно повысить возможность накапливания заряда и 

энергии позволяет такая система проводящих тел, которая замыкает внутри себя почти все 

электрическое поле, создаваемое зарядами, находящимися на них. Такие системы 

называются конденсаторами. Простейший конденсатор состоит из двух проводников 

(обкладок), расположенных на малом расстоянии друг от друга.

Q: 40. Дайте определение емкости конденсатора.

A: Под емкостью конденсатора понимают отношение заряда конденсатора к разности 

потенциалов между обкладками (напряжению):

𝐶 = 𝑞
𝜑1 − 𝜑2

.

где 𝜑1 - потенциал обкладки, на которой находится заряд 𝑞 > 0. При любом знаке заряда в 

этом случае мы получим значение 𝐶 > 0. Емкость конденсатора определяется геометрией 

обкладок и свойствами среды, заполняющей конденсатор.

Q: 41. Как вычислить емкость батареи конденсаторов при последовательном соединении? При 

параллельном?

A: Для получения нужного значения емкости отдельные конденсаторы соединяют в батареи. 

При этом можно выделить два варианта соединений: параллельное и последовательное. При 

последовательном соединении проводниками обкладки, заряженные зарядом одинакового 

знака. Емкость такой батареи равна

𝐶паралл. = ∑
𝑖

𝐶𝑖.

При последовательной схеме соединения соединяются попарно обкладки, на которых 

находятся заряды противоположного знака:

1
𝐶послед.

= ∑
𝑖

1
𝐶𝑖

.

Q: 42. По каким формулам вычисляете энергия электрического поля?

A: Энергия электрического поля в объеме 𝑉  может быть найдена по формуле

𝑊 = ∫
𝑉

𝜀0𝜀𝐸2

2
 𝑑𝑉 = ∫

⃗𝐸𝐷⃗
2

 𝑑𝑉

где величина

𝑤 = 𝜀0𝜀𝐸2

2
=

⃗𝐸𝐷⃗
2

,

называется плотностью энергии.

- 11 -



Данные соотношения справедливы для однородного изотропного диэлектрика, для которого 

выполняется равенство 𝐷⃗ = 𝜀0𝜀 ⃗𝐸.

Q: 43. Как вычислить работу при поляризации диэлектрика?

A: Работа, затраченная на поляризацию единицы объема диэлектрика, может быть найдена 

по формуле

𝐴 =
⃗𝐸 ⃗𝑃
2

Отсюда следует, что объемная плотность энергии 𝑤 = 𝐸⃗𝐷⃗
2  содержит в себе как собственную 

энергию электрического поля 
𝜀0𝐸2

2 , так и энергию поляризации диэлектрика 𝐸⃗𝑃⃗
2 .
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Постоянный электрический ток

Q: 1. Что такое электрический ток?

A: Электрический ток - это упорядоченное движение электрических зарядов. Носителями 

тока в проводящей среде являются либо электроны (в металлах), либо ионы (в электролитах), 

либо другие заряженные частицы и их комбинации.

Количественной характеристикой тока является основная единица электромагнетизма сила 

тока 𝐼 , которая имеет смысл величины заряда, переносимого в единицу времени через 

рассматриваемую поверхность 𝑆 : 𝐼 = 𝑑𝑞
𝑑𝑡 , где 𝑑𝑞 - заряд, переносимый через поверхность 𝑆 

за время 𝑑𝑡. Единицей силы тока является ампер (𝐴).

Q: 2. Дайте определение плотности тока.

A: Более детальной характеристикой тока является плотность тока ⃗𝑗, которая определяет 

распределение тока по поверхности 𝑆. Численно 𝑗 определяется соотношением 𝑗 = 𝑑𝐼
𝑑𝑆⟂

, где 

𝑑𝑆⟂ - площадка, перпендикулярная к направлению средней дрейфовой скорости носителей 

тока, на которую приходится ток силой 𝑑𝐼 . За направление вектора ⃗𝑗 принимается 

направление средней скорости 𝑢⃗ положительных зарядов. Величина скорости 

упорядоченного движения на много порядков меньше скорости теплового движения, но 

хаотическое движение не дает вклада в ток. Ток определяется малой скоростью 

упорядоченного движения, на за счет большой концентрации носителей заряда может 

достигать больших значений. Направление тока отрицательных носителей противоположно 

их скорости, поэтому в общем случае плотность определяется формулой: ⃗𝑗 = 𝜌+𝑢⃗+ + 𝜌+𝑢⃗−, 

где 𝜌+ и 𝜌− - объемная плотности положительного и отрицательного зарядов носителей 

тока, а 𝑢⃗+ и 𝑢⃗− - средние скорости их упорядоченного движения.

Поле вектора ⃗𝑗 изображается графически с помощью линий тока (линий вектора ⃗𝑗), также как 

и поле ⃗𝐸. Зная ⃗𝑗 можно определить силу полного тока через рассматриваемую поверхность:

𝐼 = ∬
𝑆

⃗𝑗 𝑑 ⃗𝑆

Q: 3. Сформулируйте уравнение непрерывности (в интегральной форме).

A: Соотношение

∯
𝑆

⃗𝑗 𝑑 ⃗𝑆 = −𝑑𝑞
𝑑𝑡

называют уравнением непрерывности, где 𝑞 - заряд внутри объема 𝑉  через поверхность 

которого и вычисляется ток, а 𝑑𝑞
𝑑𝑡  - убыль этого заряда в единицу времени.

Для стационарных (постоянных) токов 𝑑𝑞
𝑑𝑡 = 0, поэтому

∯
𝑆

⃗𝑗 𝑑 ⃗𝑆 = 0,

т.е. в этом случае линии ⃗𝑗 непрерывны внутри 𝑉 .

Q: 4. Сформулируйте уравнение непрерывности (в дифференицальной форме).

A: Для фиксированного в среде объема 𝑉
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− 𝑑
𝑑𝑡

∫ 𝜌𝑑𝑉 = − ∫ 𝜕𝜌
𝜕𝑡

 𝑑𝑉

поэтому

∯ ⃗𝑗 𝑑 ⃗𝑆 = − ∫ 𝜕𝜌
𝜕𝜌

откуда, повторяя выкладки, проведенные при представлении теоремы Гаусса для вектора ⃗𝐸 

в дифференциальной форме, получим ∇⃗ ⋅ ⃗𝑗 = −𝜕𝜌
𝜕𝑡 . Для стационарного случая: ∇⃗ ⋅ ⃗𝑗 = 0.

Q: 5. Сформулируйте закон Ома для однородного проводника.

A: Сила тока, протекающего по однородному проводнику, пропорциональна разности 

потенциалов на его концах (напряжению 𝑈 ):

𝐼 = 𝜑1 − 𝜑2
𝑅

= 𝑈
𝑅

,

где 𝑅 - электрическое сопротивление проводника. Единицами измерения электрического 

сопротивления являются омы (Ом).

В общем случае 𝑅 зависит от размеров и формы проводника, его материала и температуры, 

а также от распределения тока ⃗𝑗( ⃗𝑟) в проводнике.

В простейшем случае, если ток течет вдоль оси однородного цилиндрического проводника 

сопротивление:

𝑅 = 𝜌 𝑙
𝑆

,

где 𝑙 - длина проводника, 𝑆 - площадь его поперечного сечения, 𝜌 - удельное электрическое 

сопротивление, которое зависит от материала проводника и его температуры. Единицы 

измерения 𝜌: Ом ⋅ м.

Q: 6. Сформулируйте закон Ома в локальном виде.

A: Закон Ома в локальном виде имеет вид

⃗𝑗 =
⃗𝐸

𝜌
= 𝜎 ⃗𝐸,

где 𝜎 = 𝜌−1 - удельная электропроводность среды. Единицу, обратную Ому, называют 

сименсом (См), поэтому единицей 𝜎 является сименс, деленный на метр (См
м

).

Для постоянного тока имеем для произвольного объема, ограниченного поверхностью 𝑆, 

внутри проводника:

∯
𝑆

𝜎 ⃗𝐸 𝑑 ⃗𝑆 = 0

Если при этом проводник однородный, то 𝜎 ∮ ⃗𝐸 𝑑 ⃗𝑆 = 0, т.к. 𝜎 ≠ 0, то ∯ ⃗𝐸 𝑑 ⃗𝑆 = 0, а по 

теореме Гаусса это значит, что в объеме внутри поверхности 𝑆 избыточный заряд 

отсутствует. Он появляется на поверхности однородного проводника и прочих границах 

перехода между проводниками и различных неоднородностях. В статическом случае также 

как и в случае стационарного тока, заряды расположены на поверхности. Но в первом случае 
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внутри проводника 𝐸 = 0, поэтому у поверхности проводника ⃗𝐸 перпендикулярно 

поверхности. Во втором случае внутри ⃗𝐸 ≠ 0 и направлено вдоль проводника. В силу 

непрерывности тангенциальной составляющей ⃗𝐸 значения тангенциальной составляющей 

вблизи поверхности проводника будет равно значению 𝐸 внутри проводника. Значит, при 

появлении тока в проводнике распределение зарядов на поверхности изменяется. Но при 

стационарном токе распределение зарядов остается постоянным и образованное ими поле ⃗𝐸 

остается потенциальным. Отличие же кулоновских полей неподвижных зарядов и 

участвующих в стационарном движении проявляется в последнем случае в наличии поля ⃗𝐸 

внутри проводника.

Q: 7. Что такое сторонние силы?

A: Если бы все действующие на носители тока силы сводились к силам электростатического 

поля, то под действием этих сил положительные носители перемещались бы из мест с 

большим потенциалом к местам с меньшим потенциалом, а отрицательные носители 

двигались бы в обратном направлении. Это вело бы к выравниванию потенциалов, и в 

результате все соединенные между собой проводники приобрели бы одинаковый 

потенциал, и ток бы прекратился. Иными словами, при наличии лишь кулоновских сил в 

системе связанных проводников не мог бы существовать постоянный ток.

Поэтому в цепи постоянного тока наряду с участками, где положительные носители тока 

движутся в сторону уменьшения потенциала 𝜑, должны быть участки, на которых перенос 

положительных носителей происходит в сторону возрастания 𝜑, т.е. против сил 

электрического поля. Перенос носителей на этих участках возможен лишь с помощью сил 

не электростатического происхождения. Это так называемые сторонние силы. Таким 

образом, для поддержания постоянного тока необходимы сторонние силы, действующие 

либо на отдельных участках цепи, либо во всей цепи. Физическая природа сторонних сил 

может быть весьма различной. Они могут быть обусловлены, например химической и 

физической неоднородностью проводника - таковы силы, возникающие при 

соприкосновении разнородных проводников (гальванические элементы, аккумуляторы) или 

проводников различной температуры (термоэлементы) и т.д.

Q: 8. Сформулируйте обобщенный закон Ома в локальной форме.

A: Для количественной характеристики сторонних сил, как и кулоновских, вводят 

напряженность ⃗𝐸′, как стороннюю силу действующую на единицу заряда. При наличии 

сторонних сил, закон Ома в локальном виде должен замениться соотношением

⃗𝑗 = 𝜎( ⃗𝐸 + ⃗𝐸′),

которое выражает обобщенный закон Ома в локальной форме.

Q: 9. Сформулируйте закон Ома для неоднородного участка цепи.

A: Закон Ома для неоднородного участка цепи (в интегральном виде) имеет вид

𝐼 ⋅ 𝑅 = (𝜑1 − 𝜑2) + ℰ︀1−2,

где ℰ︀1−2 = ∫2
1

⃗𝐸′ 𝑑 ⃗𝑙 - электродвижущая сила (ЭДС), действующая на участке цепи, (𝜑1 − 𝜑2) 
- разность потенциалов.

- 15 -



Если ток идет от 1 к 2, то 𝐼 > 0, если направление вектора напряженности сторонних сил 

совпадает с положительным направлением (от 1 к 2), то ℰ︀ > 0, в противном случае значение 

ЭДС будет отрицательным.

Q: 10. Сформулируйте закон Джоуля-Ленца (для однородного участка цепи).

A: Прохождение тока в проводнике, обладающем сопротивлением, сопровождается 

выделением тепла. Ограничимся ситуациями, когда других превращений энергий нет 

(проводник неподвижный, химические реакции не протекают). Тогда для однородного 

участка цепи закон Джоуля-Ленца имеет вид

𝑑𝑄
𝑑𝑡

= 𝐼2𝑅,

где 𝑑𝑄
𝑑𝑡  - теплота, выделяемая в единицу времени (тепловая мощность).

Q: 11. Сформулируйте закон Джоуля-Ленца в локальной форме для однородного участка цепи.

A: Закон Джоуля-Ленца в локальной форме:

𝑑𝑞
𝑑𝑡

= 𝑗2𝜌,

где 𝑞 = 𝑑𝑄
𝑑𝑉  - удельная тепловая мощность (мощность в расчете на единицу объема). 

Удельная тепловая мощность пропорциональна квадрату плотности электрического тока и 

удельному сопротивлению среды в данной точке.

Если на носителей тока действуют только кулоновские силы, то ⃗𝑗 = 𝐸⃗
𝜌 :

𝑑𝑞
𝑑𝑡

= ⃗𝑗 ⃗𝐸 = 𝜎 ⃗𝐸.

Q: 12. Сформулируйте закон Джоуля-Ленца для неоднородного участка цепи.

A: Для неоднородного участка цепи из закона Ома можно записать

𝐼2𝑅 = (𝜑1 − 𝜑2)𝐼 + ℰ︀𝐼,

где правая часть - мощность тока на рассматриваемом участке цепи. Для простой 

(неразветвленной) замкнутой цепи (𝜑1 = 𝜑2): 𝑑𝑄
𝑑𝑡 = ℰ︀𝐼 , т.е. общее количество выделяемой за 

единицу времени во всей цепи джоулевой теплоты равно мощности только сторонних сил. 

В локальной форме для неоднородного участка цепи выражение удельной тепловой 

мощности имеет вид

𝑑𝑞
𝑑𝑡

= 𝑗2𝜌 = ⃗𝑗( ⃗𝐸 + ⃗𝐸′).
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Магнитное поле. Электромагнитная индукция

Q: 1. Дайте определение силы Лоренца.

A: Из опыта известно, что сила ⃗𝐹 , действующая на точечный заряд 𝑞, зависит как от его 

положения, так и от его скорости ⃗𝑣. Поэтому эту силу можно разделить на две составляющие 

- электрическую ⃗𝐹𝐸  (она не зависит от движения заряда) и магнитную ⃗𝐹𝑀  (зависит от 

скорости заряда).

Q: 2. Что такое вектор 𝐵⃗?

A: Магнитную силу, также как и электрическую, можно определить, введя понятие 

магнитного поля. Оно характеризуется вектором 𝐵⃗ (магнитной индукцией). Единицей 𝐵⃗ 

является тесла (Тл). В каждой точке пространства ⃗𝐹𝑀  определяется формулой

⃗𝐹𝑀 = 𝑞[ ⃗𝑣, 𝐵⃗].

Полная электромагнитная сила (сила Лоренца), действующая на заряд 𝑞, равна

⃗𝐹 = 𝑞 ⃗𝐸 + 𝑞[ ⃗𝑣, 𝐵⃗].

Данное соотношение имеет универсальный характер: оно справедливо для любых 

(постоянных и переменных) полей и любых скоростей ⃗𝑣. С его помощью можно определить 
⃗𝐸 и 𝐵⃗, как это уже делалось для электрического поля. Существуют и другие методы 

определения 𝐵⃗.

Следует отметить, что магнитная сила всегда перпендикулярна скорости частицы, поэтому 

работу над зарядом не совершает. В постоянном магнитном поле энергия движущейся 

заряженной частицы не изменяется (если можно пренебречь потерями на излучение).

В нерялитивистском приближении сила Лоренца, как и любая другая сила, не изменяется 

при переходе от одной инерциальной системы к другой. Но скорость ⃗𝑣 при этом изменяется, 

значит, изменяется ⃗𝐹𝑀 , поэтому изменится ⃗𝐹𝐸 = 𝑞 ⃗𝐸. Это говорит о том, что разделение 

сил и полей на электрические и магнитные зависит от выбора системы отсчета.

Q: 3. Сформулируйте принцип суперпозиции для вектора 𝐵⃗?

A: Для магнитного поля, как и для электрического, справедлив принцип суперпозиции: 

магнитное поле, создаваемое несколькими движущимися зарядами или токами, равно 

векторной сумме магнитных полей, создаваемых каждым зарядом или током в отдельности 

(без учета наличия других зарядов или токов): 𝐵⃗( ⃗𝑟) = ∑ 𝐵⃗𝑖( ⃗𝑟).

Q: 4. Сформулируйте закон Био-Савара-Лапласа.

A: Закон Био-Савара-Лапласа позволяет определить вклад в магнитное поле от 

элементарного объема 𝑑𝑉  проводника с током. Он имеет вид

𝑑𝐵⃗ = 𝜇0
4𝜋

[ ⃗𝑗, ⃗𝑟]
𝑟3 𝑑𝑉 ,

где 𝜇0 = 4𝜋 ⋅ 10−7 Гн/м - магнитная постоянная, ⃗𝑟 - вектор, проведенный от объема 𝑑𝑉  к 

точке, в которой наблюдается магнитное поле.

Если ток 𝐼  течет по элементарному отрезку проводника 𝑑 ⃗𝑙, то можно записать
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𝑑𝐵⃗ = 𝜇0
4𝜋

=
𝐼[𝑑 ⃗𝑙, ⃗𝑟]

𝑟3

Проинтегрировав по всем токам, с учетом принципа суперпозиции, полное поле 𝐵⃗ получим:

𝐵⃗ = 𝜇0
4𝜋

∫ [ ⃗𝑗, ⃗𝑟]
𝑟3 𝑑𝑉

𝐵⃗ = 𝜇0
4𝜋

∫
𝐼[𝑑 ⃗𝑙, ⃗𝑟]

𝑟3

Q: 5. Найдите поле 𝐵⃗ прямого тока.

A: Магнитное поле прямого тока, т.е. тока, текущего по тонкому прямому проводу 

бесконечной длины. По свойству векторного произведения следует, что в произвольной 

точке 𝐴 векторы 𝑑𝐵⃗ от всех элементов токов имеют одно направление - за плоскость 

рисунка.

Поэтому можно складывать просто модули 𝑑𝐵⃗. В нашем случае 𝑑𝐵⃗ удобней выразить не 

через угол между 𝑑 ⃗𝑙 и ⃗𝑟, а через 𝛼, тогда

𝑑𝐵 = 𝜇0
4𝜋

𝐼𝑑𝑙 cos 𝛼
𝑟3 .

Как видно из рисунка 𝑑𝑙 cos 𝛼 = 𝑟𝑑𝛼 и 𝑟 = 𝑏
cos 𝛼 . Значит 𝑑𝐵 = 𝜇0

4𝜋 ⋅ 𝐼 cos 𝛼𝑑𝛼
𝑏 . Интегрируя 

последнее выражение по углу, получим

𝐵 = 𝜇0
2𝜋

⋅ 𝐼
𝑏
(sin 𝛼2 − sin 𝛼1).

Это выражение позволяет находить магнитную индукцию от конечного проводника. В 

случае бесконечного проводника (𝛼2 = 𝜋
2 , 𝛼1 = −𝜋

2 ):

𝐵 = 𝜇0
2𝜋

⋅ 𝐼
𝑏

Q: 6. Какую силу называют силой Ампера?

A: Силы, действующие на токи в магнитном поле, называют силами Ампера. Сила, 

действующая на элементарный объем 𝑑𝑉  проводника с плотностью тока ⃗𝑗 равна

𝑑 ⃗𝐹 = [ ⃗𝑗, 𝐵⃗] 𝑑𝑉 .

Если проводник достаточно тонкий, то

𝑑 ⃗𝐹 = 𝐼[𝑑 ⃗𝑙, 𝐵⃗].

Для отрезка проводника в однородном поле ⃗𝐹 = 𝐼[ ⃗𝑙, 𝐵⃗], где ⃗𝑙 - вектор, проведенный из 

начала в конец отрезка в направлении тока. Если поле 𝐵⃗ однородно, то для замкнутого 

контура ⃗𝐹 = 0.

Q: 7. Дайте определение магнитного момента.
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A: В неоднородном поле в общем случае ⃗𝐹 ≠ 0 и расчет довольно сложен. Он упрощается в 

случае маленького плоского контура, который называют элементарным и характеризуют 

магнитным моментом 𝑝𝑚:

⃗𝑝𝑚 = 𝐼𝑆𝑛⃗,

где 𝐼  - ток, 𝑆 - площадь, ограниченная контуром, 𝑛⃗ - нормаль к контуру, направление 

которой согласуется с направлением тока правилом правого винта.

Сила, действующая на элементарный контур, может быть найдена по формуле

⃗𝐹 = 𝑝𝑚
𝜕𝐵⃗
𝜕𝑛

,

где 𝑝𝑚 - модуль магнитного момента, а 𝜕𝐵⃗
𝜕𝑛  - производная вектора 𝐵⃗ по перемещению в 

направлении 𝑛⃗ (т.е. в направлении магнитного момента ⃗𝑝𝑚).

Из данной формулы видно, что:

1. В однородном магнитном поле ⃗𝐹 = 0, т.к. 𝜕𝐵⃗
𝜕𝑛 = 0.

2. Направление вектора ⃗𝐹  в общем случае не совпадает ни с вектором 𝐵⃗, ни с вектором ⃗𝑝𝑚; 

вектор ⃗𝐹  совпадает с направлением приращрения вектора 𝐵⃗, взятого в направлении 

вектора ⃗𝑝𝑚 в месте расположения контура.

Q: 8. Сформулируйте теорему Гаусса для вектора 𝐵⃗.

A: Всякое вещество является магнетиком, под действием магнитного поля оно 

намагничивается, т.е. его физически бесконечно малые объемы приобретают магнитный 

момент. Намагниченное вещество создает свое магнитное поле 𝐵⃗′. Оно вместе с полем 𝐵⃗0, 

созданным токами проводимости образует результирующее поле 𝐵⃗ = 𝐵⃗0 + 𝐵⃗′.

Поля 𝐵⃗0 и 𝐵⃗′ являются усредненными по физически бесконечным малым объемам 

величинами. Также, как и 𝐵⃗0 поле 𝐵⃗′ порождается токами (их называют микротоками или 

молекулярными токами), поэтому для 𝐵⃗ и при наличии магнетика справедлива теорема 

Гаусса:

∯ 𝐵⃗ 𝑑 ⃗𝑆 = 0

Q: 9. В чем заключается механизм намагничения?

A: Молекулы вещества из-за внутреннего движения заряда могут иметь собственный 

магнитный момент. Вообще-то, элементарные частицы (в том числе электроны) могут 

обладать магнитными моментами, не связанными с их перемещением в пространстве, но и 

в этом случае можно представлять поле 𝐵⃗′ как результат действия некоторых микротоков. 

При отсутствии внешнего магнитного поля магнитные моменты молекул ориентированы 

беспорядочно и их вклад в результирующее магнитное поле равен нулю. Также равен нулю 

и суммарный магнитный момент вещества.

При внесении вещества во внешнее магнитное поле магнитные моменты молекул, если они 

были в отсутствие поля, приобретают преимущественную ориентацию по полю. Суммарный 

магнитный момент вещества становится отличным от нуля и возникает 𝐵⃗′ ≠ 0.
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Появление суммарного магнитного момента и 𝐵⃗′ под действием внешнего поля 

наблюдается и у вещества, молекулы которого изначально не имеют собственного 

магнитного момента. В этом случае магнитные моменты молекул индуцируются внешним 

магнитным полем, причем индуцированный магнитный момент оказывается направлен 

противоположно внешнему полю.

Q: 10. Дайте определение намагниченности ⃗𝐽 .

A: Состояние вещества при изучении магнитных явлений характеризуется величиной, 

которая называется намагниченность и обозначается символом ⃗𝐽 . По определению

⃗𝐽 = ∑ ⃗𝑝𝑚
Δ𝑉

,

где Δ𝑉  - физически бесконечно малый объем, содержащий точку с радиус-вектором ⃗𝑟, 

поэтому ⃗𝐽 = ⃗𝐽( ⃗𝑟); ⃗𝑝𝑚 - магнитный момент одной молекулы. Суммирование производится 

по всем магнитным моментам ⃗𝑝𝑚 находящихся в объеме Δ𝑉 .

Таким образом, ⃗𝐽  - магнитный момент единицы объема. Если ввести концентрацию 

молекул в пространстве 𝑛 = Δ𝑁
Δ𝑉  и среднее значение магнитного дипольного момента ⟨ ⃗𝑝𝑚⟩, 

то формулу выше можно представить в более удобном для понимания физических 

процессов виде:

⃗𝐽 = 𝑛⟨ ⃗𝑝𝑚⟩

Q: 11. Какие токи называют молекулярными?

A: C молекулярным магнитным моментом каждой молекулы можно связать элементарный 

круговой ток. Их называют молекулярными токами.

Q: 12. Какие токи называют поверхностными токами намагничивания?

A: При намагничивании вещества молекулярные токи упорядочиваются и их действие 

оказывается эквивалентно действию некоторых макроскопических токов. Эти 

макроскопические токи, магнитное поле которых совпадает с суммарным полем 

молекулярных токов называются токами намагничивания и обычно обозначаются 𝐼′. Токи, 

создаваемые при макроскопическом движении носителей заряда в веществе, называют 

токами проводимости 𝐼 .

Понять возникновение токов намагничивания можно на примере однородного 

цилиндрического магнетика с намагниченностью ⃗𝐽 , направленнойц вдоль оси цилиндра.

Как видно в объеме они компенсируют друг друга, а нескомпенсированными остаются 

только токи, выходящие на боковую поверхность цилиндра. Они образуют 

макроскопический поверхностный ток намагничивания 𝐼′. Ток 𝐼′ возбуждает такое же 

макроскопическое магнитное поле, что и молекулярные токи вместе взятые.

Q: 13. Какие токи называют объемными токами намагничивания?

A: Теперь рассмотрим случай, когда намагниченный магнетик является неоднородным. 

Пусть например, молекулярные токи расположены так, как на рисунке ниже, где толщина 

линий соответствует силе молекулярных токов.
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Вектор ⃗𝐽  направлен из плоскости рисунка и растет по модулю с ростом координаты 𝑦. В 

этом случае компенсации молекулярных токов внутри магнетика нет, и возникает 

объемный ток намагничивания, текущий в положительном направлении оси 0𝑥.

Соответственно токам вводят линейную ⃗𝑖 (А/м) и объемную плотность токов ⃗𝑗 (А/м2). Если 

бы удалось установить распределение токов ⃗𝑖′ и ⃗𝑗′, то в принципе можно было бы по закону 

Био-Савара-Лапласа найти 𝐵⃗′, а следовательно, и 𝐵⃗. Но в общем случае это сделать 

невозможно, так как ⃗𝑖′ и ⃗𝑗′ зависят от результирующего поля 𝐵⃗.

Q: 14. Дайте определение вектора 𝐻⃗ .

A: Для исследования магнитных полей в магнетиках вводят вспомогательный вектор 𝐻⃗  

(вектор напряженности магнитного поля):

𝐻⃗ = 𝐵⃗
𝜇0

− ⃗𝐽

Q: 15. Сформулируйте теорему о циркуляции вектора 𝐻⃗  (в интегральной и дифференциальной 

форме).

A: Теорема о циркуляции имеет вид

∮ 𝐻⃗ 𝑑 ⃗𝑙 = 𝐼

Циркуляция вектора 𝐻⃗  по произвольному замкнутому контуру равна алгебраической сумме 

токов проводимости, охватываемых этим контуром. Единицей величины 𝐻⃗  является 

ампер на метр (А/м). Дифференциальная форма теоремы о циркуляции вектора 𝐻⃗ :

[∇, 𝐻⃗] = ⃗𝑗,

т.е. ротор вектора 𝐻⃗  равен плотности тока проводимости в той же точке вещества.

Q: 16. Связь между ⃗𝐽  и 𝐻⃗? Между 𝐵⃗ и 𝐻⃗?

A: Для магнетиков, в которых выполняется линейная зависимость между напряженностью 

магнитного поля и намагниченностью:

⃗𝐽 = 𝜒𝐻⃗

между 𝐵⃗ и 𝐻⃗  также существует линейная связь:

𝐵⃗ = 𝜇𝜇0𝐻⃗

где 𝜒 - магнитная восприимчивость, 𝜇 = 1 + 𝜒 - магнитная проницаемость среды.

Q: 17. В чем заключается явление электромагнитной индукции?

A: В 1831 году Фарадеем было открыто явление электромагнитной индукции. Оно 

заключается в том, что в замкнутом проводящем контуре при изменении магнитного потока 

вектора 𝐵⃗, охватываемого этим контуром, возникает электрический ток, который 

называется индукционным.
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Q: 18. Дайте определение ЭДС индукции.

A: Индукционный ток в контуре возникает, потому что в нем появляется ЭДС индукции ℰ︀𝑖. 

Существенно, что ℰ︀𝑖 определяется лишь скоростью изменения магнитного потока Φ𝐵, т.е. 
𝑑Φ𝐵
𝑑𝑡  и не зависит от способа изменения Φ𝐵.

Фарадей выяснил, что индукционный ток можно вызвать двумя способами.

Q: 19. Сформулируйте правило Ленца.

A: Направление индукционного тока (а также ЭДС индукции) определяется правилом 

Ленца: индукционный ток всегда направлен так, чтобы противодействовать причине, его 

вызывающей. Другими словами, магнитный поток, создаваемый индукционным током, 

направлен так, чтобы уменьшить изменение магнитного потока, создающего ЭДС 

индукции.

Q: 20. Какие токи называют токам Фуко?

A: Если рамку P удалять, то направление индукционного тока в ней изменится на 

противоположное. В тех случаях, когда в массивных сплошных проводниках возникает по 

какой-либо причине изменение магнитного потока через возможные замкнутые контуры в 

проводниках, то в этих контурах появятся индукционные токи (так называемые токи Фуко). 

Этот эффект испульзуют в некоторых тормозных системах.

Но часто появление токов Фуко проявляется негативно - они приводят к потерям энергии и 

нежелательным нагреванию проводников, например, трансформаторах. Для борьбы с ними 

сердечники трансформаторов собирают из тонких, изолированных друг от друга пластин, 

таким образом, чтобы исключить возможность появления больших контуров, 

пронизываемых магнитным потоком.

Q: 21. Сформулируйте закон электромагнитной индукции.

A: Закон электромагнитной индукции. По этому закону, при любом изменении магнитного 

потока через замкнутый контур, в нем возникает ЭДС индукции, которая определяется по 

формуле

ℰ︀𝑖 = 𝑑Φ𝐵
𝑑𝑡

.

Если контур проводящий, то в нем возникает индукционный ток, величина которого будет 

определяться ℰ︀𝑖 и характеристиками контура. Знак минус в формуле выше отражает 

правило Ленца и связан с согласованием направления обхода контура и направления 

нормали к поверхности, опирающейся на контур.

Направление нормали определяет знак магнитного потока (и его изменения), а направление 

обхода определяет знак э.д.с. Правилом согласования является правило винта - 

положительный обход, при наблюдении “с конца вектора 𝑛⃗”, тот, который совершается 

против часовой стрелки.

В случае, когда замкнутый контур является конструкцией типа катушки c 𝑁  витками, то 

полный магнитный поток, пронизывающий такой сложный контур, складывается из 

потоков, пронизывающих отдельные витки, если все они равны Φ1, то полный магнитный 

поток равен Φ = 𝑁Φ1 и, соответственно, ЭДС индукции в контуре будет равна
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ℰ︀ = −𝑁 𝑑Φ1
𝑑𝑡 .
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Уравнения Максвелла

Q: 1. Дайте определение тока смещения.

A: Теория электромагнитного поля, начала которой заложил Фа- радей, математически была 

завершена Максвеллом. При этом одной из важнейших новых идей, выдвинутых 

Максвеллом, была мысль о симметрии в действии электрического и магнитного полей. А 

именно, поскольку меняющееся во времени магнитное поле (𝜕𝐵⃗
𝜕𝑡 ) создает электрическое 

поле, следует ожидать, что меняющееся по времени электрическое поле (𝜕𝐸⃗
𝜕𝑡 ) создает 

магнитное поле.

Меняющееся со временем электрическое поле характеризуется плотностью тока смещения:

⃗𝑗см = 𝜕𝐷⃗
𝜕𝑡

.

Q: 2. Дайте определение полного тока.

A: Сумму тока проводимости и тока смещения называют полным током:

⃗𝑗полн = ⃗𝑗 + 𝜕𝐷⃗
𝜕𝑡

Q: 3. Сформулируйте теорему о циркуляции вектора 𝐻⃗  в случае произвольных токов (в 

интегральной и дифференциальной форме).

A: C учетом этого соотношения, теорема о циркуляции вектора 𝐻⃗  принимает вид

∮ 𝐻⃗ 𝑑 ⃗𝑙 = ∫ ∫( ⃗𝑗 + 𝜕𝐷⃗
𝜕𝑡

) 𝑑 ⃗𝑆

а ее дифференциальная форма:

[∇⃗, 𝐻⃗] = ⃗𝑗 + 𝜕𝐷⃗
𝜕𝑡

Q: 4. Сформулируйте уравнения Максвелла.

A: С введением тока смещения макроскопическая теория электромагнитного поля была 

блестяще завершена. Открытие тока смещения 𝜕𝐷
𝜕𝑡  позволило Максвеллу создать единую 

теорию электрических и магнитных явлений. Теория Максвелла не только объяснила все 

разрозненные явления электричества и магнетизма с единой точки зрения, но и предсказала 

ряд новых явлений, существование которых подтвердилось впоследствии.

Система фундаментальных уравнений электродинамики, называемых уравнениями 

Максвелла в неподвижных средах. В интегральной форме система имеет вид:

{∮ ⃗𝐸 𝑑 ⃗𝑙 = − ∫ 𝜕𝐵⃗
𝜕𝑡  𝑑 ⃗𝑆, ∯ 𝐷⃗ 𝑑 ⃗𝑆 = ∫ 𝜌 𝑑𝑉 , ∮ 𝐻⃗ 𝑑 ⃗𝑙 = ∫( ⃗𝑗 + 𝜕𝐷⃗

𝜕𝑡
) 𝑑 ⃗𝑆, ∯ 𝐵⃗ 𝑑 ⃗𝑆 = 0

где 𝜌 - объемная плотность сторонних зарядов, ⃗𝑗 - плотность тока проводимости.

Q: 5. В чем заключается содержание этих уравнений?
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A: Эти уравнения в сжатой форме выражают всю совокупность наших сведений об 

электромагнитном поле. Содержание этих уравнений заключается в следующем:

1. Циркуляция векторa ⃗𝐸 по любому замкнутому контуру равна со знаком минус 

производной по времени от магнитного потока через любую поверхность, ограниченную 

данным контуром. При этом пол ⃗𝐸 понимается не только вихревое электрическое поле, 

но и электростатическое (циркуляция последнего, как известно, равна нулю).

2. Поток вектора 𝐷⃗ сквозь любую замкнутую поверхность равен алгебраической сумме 

сторонних зарядов, охватываемых этой поверхностью.

3. Циркуляция вектора 𝐻⃗  по любому замкнутому контуру равна полному току (току 

проводимости и току смещения) через произвольную поверхность, ограниченную 

данным контуром.

4. Поток векторa 𝐵⃗ сквозь произвольную замкнутую поверхность всегда равен нулю.

Из уравнений Максвелла для циркуляции векторов ⃗𝐸 и 𝐻⃗  следует, что электрическое и 

магнитное поля нельзя рассматривать как независимые: изменение по времени одного из 

этих полей приводит к появлению другого. Поэтому имеет смысл лишь совокупность этих 

полей, описывающая единое электромагнитное поле.

Если же поля стационарны: ⃗𝐸 = const и 𝐵⃗ = const, то уравнения Максвелла распадаются на 

две группы независимых уравнений:

∮ ⃗𝐸 𝑑 ⃗𝑙 = 0,   ∯ 𝐷⃗ 𝑑 ⃗𝑆 = 𝑞;

∮ 𝐻⃗ 𝑑 ⃗𝑙 = 𝐼,   ∯ 𝐵⃗ 𝑑 ⃗𝑆 = 0.

В этом случае электрическое и магнитное поля независимы друг от друга, что и позволило 

нам изучить сначала постоянное электрическое поле, а затем независимо от него и 

постоянное магнитное поле. Необходимо подчеркнуть, что рассуждения, с помощью 

которых мы пришли куравнениям Максвелла, ни в коей мере не могут претендовать на их 

доказательство.

Эти уравнения нельзя «вывести», они являются основными аксиомами, постулатами 

электродинамики, полученными путем обобщения опытных фактов. Эти постулаты играют 

в электродинамике такую же роль, как законы Ньютона в классической механике или начала 

термодинамики.
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Оптика
Q: 1. Уравнения Максвелла в интегральной форме (без вывода, но объяснением физического 

смысла всех членов).

A:

∮
𝑙

⃗𝐸∗ 𝑑 ⃗𝑙 = − 𝑑
𝑑𝑡

∬
𝑆

𝐵⃗ 𝑑 ⃗𝑆

Циркуляция вектора электрического поле 𝐸 по замкнутому контуру 𝐼  определяется 

скоростью изменения магнитного потока через поверхность 𝑆 ограниченную данным 

контуром.

∮
𝑙
𝐻⃗ 𝑑 ⃗𝑙 = 𝑑

𝑑𝑡
∬

𝑆
𝐷⃗ 𝑑 ⃗𝑆 + ∬

𝑆
⃗𝑗 𝑑 ⃗𝑆

Циркуляция вектора магнитного поля 𝐻  по замкнутому контуру 𝑙 определяется суммой 

скорости изменения потока вектора электрического смещения и плотности тока 𝑗 через 

поверхность 𝑆 ограниченную данным контуром.

∯
𝑆

𝐵⃗ 𝑑 ⃗𝑆 = 0

Поток вектора индукции магнитного поля 𝐵 через замкнутую поверхность 𝑆 равен нулю.

∯
𝑆

𝐷⃗ 𝑑 ⃗𝑆 = ∭
𝑆

𝜌 𝑑𝑉

Поток вектора электрического смещения 𝐷 через замкнутую поверхность 𝑆 определяется 

алгебраической суммой зарядов находящихся внутри объема 𝑉 , ограниченного этой 

поверхностью.

Q: 2. Уравнения Максвелла в дифференциальной форме (без вывода, но объяснением физического 

смысла всех членов).

A:

rot 𝐻⃗ = 𝜕𝐷⃗
𝜕𝑡

+ ⃗𝑗

Ротор вектора напряженности магнитного поля 𝐻  определяется суммой скорости изменения 

вектора электрического смещения 𝐷 и вектора плотности тока 𝑗.

rot ⃗𝐸 = −𝜕𝐵⃗
𝜕𝑡

Ротор вектора напряженности электрического поля определяется скоростьюизменения 

магнитного поля 𝐵, взятого с обратным знаком.

div 𝐷⃗ = 𝜌

Дивергенция вектора электрического смещения 𝐷 равна объемной плотности заряда 𝜌.

div 𝐵⃗ = 0

Дивергенция вектора магнитной индукции 𝐵 равна нулю.
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Q: 3. Уравнения Максвелла в интегральной форме для случая отсутствия токов и зарядов (без 

вывода, но объяснением физического смысла всех членов).

A:

∮
𝑙

⃗𝐸∗ 𝑑 ⃗𝑙 = − 𝑑
𝑑𝑡

∬
𝑆

𝐵⃗ 𝑑 ⃗𝑆

Циркуляция вектора электрического поля 𝐸 по замкнутому контуру 𝑙 определяется 

скоростью изменения магнитного потока через поверхность 𝑆 ограниченную данным 

контуром.

∮ 𝐻⃗ 𝑑 ⃗𝑙 = 𝑑
𝑑𝑡

∬
𝑆

𝐷⃗ 𝑑 ⃗𝑆

Циркуляция вектора магнитного поля 𝐻  по замкнутому контуру 𝑙 определяется скоростью 

изменения потока вектора электрического смещения.

∯
𝑆

𝐵⃗ 𝑑 ⃗𝑆 = 0

Поток вектора индукции магнитного поля В через замкнутую поверхность 𝑆 равен нулю.

∯
𝑆

𝐷⃗ 𝑑 ⃗𝑆 = 0

Поток вектора электрического смещения 𝐷 через замкнутую поверхность 𝑆 равен нулю.

Q: 4. Уравнения Максвелла в дифференциальной форме для случая отсутствия токов и зарядов 

(без вывода, но объяснением физического смысла всех членов).

A:

rot 𝐻⃗ = 𝜕𝐷⃗
𝜕𝑡

Ротор вектора напряженности магнитного поля 𝐻  определяется скоростью изменения 

вектора электрического смещения 𝐷.

rot ⃗𝐸 = −𝜕𝐵⃗
𝜕𝑡

Ротор вектора напряженности электрического поля определяется скоростью изменения 

магнитного поля 𝐵, взятого с обратным знаком.

div 𝐷⃗ = 0

Дивергенция вектора электрического смещения 𝐷 равна нулю.

div 𝐵⃗ = 0

Дивергенция вектора магнитной индукции 𝐵 равна нулю.

Q: 5. Волновое уравнение (без вывода, но объяснением физического смысла всех членов).
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A: Волновое уравнение

Δ𝐸 − 1
𝜈2

𝜕2 ⃗𝐸
𝜕𝑡2

= 0,

где

Δ ≡ ∇2 = 𝜕2

𝜕𝑥2 + 𝜕2

𝜕𝑦2 + 𝜕2

𝜕𝑧2 ,

𝜈 - фазовая скорость.

Q: 6. Уравнение плоской ЭМ волны (без вывода, но объяснением физического смысла всех членов).

A: Самой простой гармонической электромагнитной волной является волна с постоянной 

амплитудой колебаний в любой точке наблюдения. Такие волны называются плоскими. Для 

плоской волны, распространяющейся вдоль оси 𝑧 уравнение будет иметь вид:

𝐸(𝑧, 𝑡) = 𝐸0 cos(𝜔𝑡 − 𝑘𝑧 + 𝜑0),

где 𝑘 - волновое число (модуль волнового вектора), 𝜔 - циклическая чистота, 𝐸0 - амплитуда.

Q: 7. Волновое число и волновой вектор (Определение. Направление. Формула).

A: Волновой вектор — вектор, направление которого перпендикулярно фазовому фронту 

бегущей волны, а абсолютное значение равно волновому числу.

𝑘 ≡ 𝜔
𝑉

= 2𝜋
𝜆

,

где 𝑘 - волновое число (модуль волнового вектора), 𝜔 - циклическая частота, 𝑉  - скорость 

электромагнитной волны, 𝜆 - длина волны.

Q: 8. Волновой фронт (Определение. Примеры (сферический и плоский ВФ)).

A: Геометрическое место точек, до которых доходят колебания к данному моменту времени, 

называется фронтом волны или волновым фронтом.

Q: 9. Показатель преломления среды (формула 1 через скорость света и фазовую скорость, 

формула 2 через проницаемости).

A: Показателем преломления среды 𝑛 называется отношение скорости света в вакууме 𝑐 к 

фазовой скорости света 𝑣 в данной среде 𝑛 = 𝑐
𝑣 . Также он может быть выражен через 

диэлектрическую 𝜀 и магнитную 𝜇 проницаемости среды 𝑛 = √𝜀𝜇.

Q: 10. Вектор Пойнтинга (формула без вывода, но объяснением физического смысла всех членов).

A: Вектор Пойнтинга (также вектор Умова — Пойнтинга) — вектор плотности потока энергии 

электромагнитного поля.

⃗𝑆 = 𝑤 ⃗𝑉 = [ ⃗𝐸 × 𝐻⃗]

где ⃗𝐸 и 𝐻⃗  - векторы напряженности электрического и магнитного полей соответственно. 𝑤 - 

объемная плотность энергии, 𝑉  - скорость электромагнитной волны.
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Q: 11. Интенсивность ЭМ излучения (Размерность. Выражение через квадрат амплитуды.).

A: Модуль среднего по времени значения плотности потока энергии световой волны носит 

название интенсивности света в данной точке. Единицы измерения: Вт/м2.

𝐼 = 𝐸𝑚𝐻𝑚⟨cos2(𝜔𝑡 − 𝑘𝑟 + 𝛼)⟩ = 𝐸𝑚𝐻𝑚
2

.

𝐼 = 1
2
𝐸𝑚𝐻𝑚 = 𝑛

2√
𝜀0
𝜇0

𝐸2
𝑚 = 𝑛

2√
𝜀0
𝜇0

𝐴2

Q: 12. Двухлучевая интерференция (Формула 1 через амплитуды и формула 2 через 

интенсивности).

A:

𝐴2 = 𝐴2
1 + 𝐴2

2 + 2𝐴1𝐴2 cos 𝛿

𝐼 = 𝐼1 + 𝐼2 + 2√𝐼1𝐼2 cos 𝛿.

𝐴1, 𝐴2, 𝐼1  и 𝐼2 - амплитуды и интенсивности двух интерферирующих волн, 𝛿 - разность 

фаз.

Q: 13. Связь разности хода и разности фаз (формула, с объяснением физического смысла всех 

членов).

A: Разность фаз Δ𝜑 и разность хода Δ двух волн с одинаковой длиной волны 𝜆 связаны 

соотношением: Δ𝜑 = 2𝜋Δ
𝜆 .

Q: 14. Условие максимума через разность хода и разность фаз (формула, с объяснением 

физического смысла всех членов).

A: Условие максимума интерференции: разность хода Δ интерферирующих волн равна 

целому числу длин волн (Δ = 𝑚𝜆). Разность фаз Δ𝜑 интерферирующих волн равна 

четному числу 𝜋 (Δ𝜑 = 𝑚𝜋,  𝑚 = 0, 2, 4, …).

Q: 15. Условие минимума через разность хода и разность фаз (формула, с объяснением 

физического смысла всех членов).

A: Условие минимума интерференции: разность хода Δ интерферирующих волн равна 

нечетному числу полуволн (Δ = (2𝑚 + 1)𝜆
2 ). Разность фаз Δ𝜑 интерферирующих волн 

равна нечетному числу 𝜋 (Δ𝜑 = 𝑚𝜋,  𝑚 = 1, 3, 5, …)

Q: 16. Видность интерференционной картины (формула, с объяснением физического смысла всех 

членов).

A: Видность интерференционной картины 𝑉  определяется формулой

𝑉 = 𝐼max − 𝐼min
𝐼max + 𝐼min
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где 𝐼max - интенсивность в максимуме интерференционной картины, 𝐼min - интенсивность в 

минимуме интерференционной картины. Максимальное значение 𝑉 = 1 для максимально 

контрастной картины, минимальное – 0.

Q: 17. Ширина интерференционной полосы на примере схемы Юнга (ШИП выражается через 

параметры схемы. Без вывода, но объяснением физического смысла всех членов).

A: Ширина интерференционной полосы Δ𝑦 на примере схемы Юнга.

Δ𝑦 = 𝐿
𝑑

𝜆.

где 𝐿 - расстояние от щелей до экрана, 𝑑 - расстояние между щелями, 𝜆 - длина волны.

Q: 18. Время и длина когерентности (Определение. Формула без вывода.).

A: Если разность фаз двух колебаний изменяется очень медленно, то говорят, что колебания 

остаются когерентными в течение некоторого времени 𝜏ког. Это время называют временем 

когерентности. Расстояние 𝑙ког = 𝑐𝜏ког называется длиной когерентности (𝑐 — скорость 

распространения волны).

Q: 19. Разность хода при интерференции в тонких пленках (Формула через толщину и 

показатель преломления пленки. Без вывода, но объяснением физического смысла всех членов)

A: Разность хода Δ при интерференции в тонких пленках

Δ = 2ℎ
√

𝑛2 − sin2 𝛼,

где ℎ - толщина пленки, 𝑛 - показатель преломления, 𝑎 - угол падения света.

Q: 20. Вид интерференционной картины в случае плоскопараллельной пластины, клина, 

сферической линзы, лежащей на пластине (Словесное описание или эскиз. Особенности картин.).

A: Вид интерференционной картины в случае плоскопараллельной пластины зависит от 

формы падающего излучения. Для плоской волны максимумов и минимумов не будет, 

поскольку разность хода в каждой точке одинакова. Для расходящегося пучка при 

нормальном падении будет система темных и светлых колец. При падении плоской волны 

на клин, интерференционная картина состоит из одинаковых по ширине темных и светлых 

полос. При падении плоской волны на сферическую линзу, лежащую на пластине 

интерференционная картина состоит из темных и светлых колец, ширина которых убывает с 

ростом их радиуса.

Q: 21. Принцип Гюйгенса Френеля (Определение, примеры для отверстия, экрана).

A: Принцип Гюйгенса Френеля. Каждый элемент волнового фронта можно рассматривать 

как центр вторичного возмущения, порождающего вторичные сферические волны, а 

результирующее световое поле в каждой точке пространства будет определяться 

интерференцией этих волн.

Q: 22. Интеграл Фраунгофера (без вывода, но объяснением физического смысла всех членов).

A:
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𝑈(𝑥, 𝑦, 𝑧) = 𝑒𝑖𝑘𝑧

𝑖𝜆𝑧
𝑒

𝑖𝑘(𝑥2+𝑦2)
2𝑧 ∫

∞

−∞
∫

∞

−∞
𝑢(𝑥′, 𝑦′, 0) exp(−𝑖𝑘[𝑥𝑥′ + 𝑦𝑦′]

𝑧
)𝑑𝑥′𝑑𝑦′

Распределение комплексной амплитуды 𝑈(𝑥, 𝑦, 𝑧) в дальней зоне на расстоянии 𝑧 от 

отверстия на котором происходит дифракция. 𝑘 – волновое число, 𝜆 - длина волны. 

𝑢(𝑥′, 𝑦′, 0) - распределение комплексной амплитуды в плоскости отверстия.

Q: 23. Решение интеграла Фраунгофера для узкой щели (без вывода, но объяснением физического 

смысла всех членов).

A:

𝐼𝜑 = 𝐼0
sin2(𝜋𝑏 sin 𝜑/𝜆)

(𝜋𝑏 sin /𝜆)2

Q: 24. Условие минимумов при дифракции на щели (без вывода, но объяснением физического 

смысла всех членов).

A: При дифракции Фраунгофера света с длиной волны 𝜆 на узкой щели шириной 𝑏 

положение минимумов дифракции определяется формулой

𝑏 sin 𝜃 = 𝑚𝜆,

где 𝑚 = 0, ±1, ±2 и т.д., 𝜃 - угол дифракции.

Q: 25. Вид решения для круглого отверстия (без вывода, но объяснением физического смысла всех 

членов).

A: При дифракции Фраунгофера света с длиной волны 𝜆, на круглом отверстии диаметром 

𝐷, распределение интенсивности будет зависеть от угла дифракции 𝜃 следующим образом:

𝐼(𝜃) = 𝐼0[
2𝐽1(𝑘𝐷 sin 𝜃

2 )
𝑘𝐷 sin 𝜃

2
]

2

,

где 𝑘 = 2𝜋
𝜆 , 𝐼0 - интенсивность падающего света, 𝐽1 - функция Бесселя первого порядка.

Q: 26. Условие максимумов при дифракции на решетке (без вывода, но объяснением физического 

смысла всех членов).

A: При дифракции Фраунгофера света с длиной волны 𝜆 на дифракционной решетке с 

периодом 𝑑 положение максимумов дифракции определяется формулой: 𝑑 sin 𝜃 = 𝑚𝜆, где 

𝑚 = 0, ±1, ±2 и т.д. 𝜃 – угол дифракции.

Q: 27. Разрешающая способность диф. решетки (без вывода, но объяснением физического смысла 

всех членов).

A: Разрешающая сила 𝑅 дифракционной решетки определяется минимальной разностью 

длин волн 𝛿𝜆, при которой две близкие линии в спектре воспринимаются раздельно 𝑅 = 𝜆
𝛿𝜆  

– средняя длина волны для двух разрешаемых линий.

Q: 28. Линейная поляризация(определение).
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A: Линейная поляризация электромагнитного излучения — разновидность поляризации 

волн, при которой вектор электрического или магнитного поля совершает колебания в 

плоскости.

Q: 29. Закон Малюса (без вывода, но объяснением физического смысла всех членов).

A: Закон Малюса

𝐼 = 𝐼0 cos2 𝜃

определяет соотношение интенсивностей линейно поляризованного света до (𝐼0) и после (𝐼) 

поляризатора, если направление поляризации поляризатора составляет угол 𝜃 с плоскостью 

поляризации падающего света.

Q: 30. Степень поляризации (без вывода, но объяснением физического смысла всех членов).

A: Степень поляризации света 𝑃  определяется формулой

𝑃 = 𝐼max − 𝐼min
𝐼max + 𝐼min

,

где 𝐼max и 𝐼min это максимальная (𝐼max) и минимальная (𝐼min) интенсивности частично 

поляризованного света, который пропускается анализатором. Максимальное значение 𝑃 = 1 

для полностью поляризованного света, минимальное – 0 для неполяризованного света.

Q: 31. Эллиптическая поляризация(определение).

A: Эллиптическая поляризация электромагнитного излучения — это одно из состояний 

поляризации, при которой направление вектора электрического поля ⃗𝐸 вращается с 

постоянной скоростью в плоскости, перпендикулярной направлению распространения 

волны, описывая своим концом эллипс. Частным случаем эллиптическая поляризации 

является циркулярная, когда эллипс превращается в окружность.

Q: 32. Двулучепреломление в кристаллах. Обыкновенный и необыкновенный луч. (Определение, 

причины нарушения законов геом. оптики.)

A: Луч обыкновенный (англ. ordinary ray) - луч, показатель преломления которого не 

зависит от направления распространения в однородной среде. Луч необыкновенный (англ. 

extraordinary ray) - луч, показатель преломления которого меняется в зависимости от 

направления распространения в среде.

Q: 33. Полуволновые и четверть волновые пластины (принцип работы с примерами).

A: Полуволновая пластина обеспечивает разность фаз для двух ортогональных поляризаций 

равную 𝜋. Используется для поворота плоскости поляризации без потерь интенсивности. 

Четверть волновые пластина обеспечивает разность фаз для двух ортогональных 

поляризаций равную 𝜋2 . Используется для преобразования линейно поляризованного света в 

циркулярно-поляризованный и наоборот.

Q: 34. Формулы Френеля для 𝑠 и 𝑝 поляризации (без вывода, но объяснением физического смысла 

всех членов).
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A:

Формулы Френеля для 𝑠 и 𝑝 поляризации

𝑟𝑠 = 𝑛1 cos 𝜃𝑖 − 𝑛2 cos 𝜃𝑡
𝑛1 cos 𝜃𝑖 + 𝑛2 cos 𝜃𝑡

,

𝑡𝑠 = 2𝑛1 cos 𝜃𝑖
𝑛1 cos 𝜃𝑖 + 𝑛2 cos 𝜃𝑡

,

𝑟𝑝 = 𝑛2 cos 𝜃𝑖 − 𝑛1 cos 𝜃𝑡
𝑛2 cos 𝜃𝑖 + 𝑛1 cos 𝜃𝑡

,

𝑡𝑝 = 2𝑛1 cos 𝜃𝑖
𝑛2 cos 𝜃𝑖 + 𝑛1 cos 𝜃𝑡

,

где 𝑛1 - показатель преломления среды, из которой падает волна, 𝑛2 - показатель 

преломления среды, в которую волна проходит, 𝜃𝑖 - угол падения, 𝜃𝑡 - угол преломления, 

𝑟𝑠, 𝑡𝑠, 𝑟𝑝 и 𝑡𝑝 - амплитудные коэффициенты отражения (𝑟) b пропускания (𝑡) для 𝑠 и 𝑝 

поляризации. Угол падения связан с углом преломления законом Снеллиуса:

𝑛1 sin(𝜃𝑖) = 𝑛2 sin(𝜃𝑡)

Q: 35. Что называется углом Брюстера?

A: Угол падения света, при котором отражённый луч полностью поляризован, называется 

углом Брюстера. При падении под углом Брюстера отражённый и преломлённый лучи 

взаимно перпендикулярны.

Q: 36. Как связан угол Брюстера с показателями преломления среды, из которой падает волна и 

показателем преломления среды, в которую волна проходит.

A:

tan 𝜃бр = 𝑛2
𝑛1

𝑛1 – показатель преломления среды, из которой падает волна. 𝑛2 - показатель преломления 

среды, в которую волна проходит.
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