This repository has been archived on 2026-01-29. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
physics/course2/sem3/homework/solutions.typ
2025-12-15 11:02:23 +03:00

778 lines
25 KiB
Typst
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
#set page(numbering: "1")
#set page(
paper: "a4",
margin: (x: 1.8cm, y: 1.5cm),
)
#set text(
font: "New Computer Modern",
size: 14pt
)
#set par(
/*first-line-indent: (
amount: 1.5em,
all: true
),*/
justify: true,
leading: 0.52em,
)
#align(center)[#text(size: 1.5em)[Домашняя работа. Дощенников Никита]]
#outline(
title: []
)
#align(center)[=== Электростатика. Постоянный ток.]
#align(center)[===== №1]
Система состоит из полусферы несущей равномерно распределённый заряд с поверхностной плотностью $sigma eq 5 " нКл/м"^2$. Рассчитать модуль напряжённости электростатического поля, создаваемого полусферой в её центре.
*Решение*:
#align(center)[
#figure(
image("assets/1.svg"),
supplement: [Рис.],
caption: [Полусфера.]
) <img1>
]
В системе СИ: $sigma eq 5 " нКл/м"^2 eq 5 dot 10^(-9) " Кл/м"^2$.
В сферических координатах с центром в искомой точке. Зададим точку на сфере полярным углом $theta in [0, pi/2]$ и азимутальным $phi in [0, 2 pi]$. Тогда поверхностный элемент сферы $d S$ равен:
$
d S eq R^2 sin theta d theta d phi.
$
Элемент заряда $d q$ равен:
$
d q eq sigma d S eq sigma R^2 sin theta d theta d phi
$
Поле от элементарного заряда в центра по модулю равно:
$
d E eq k frac(d q, R^2) eq k frac(sigma R^2 sin theta d theta d phi, R^2) eq k sigma sin theta d theta d phi.
$
Расписав составляющие:
$
d E_x eq -k sigma sin^2 theta cos phi d theta d phi, \
d E_y eq -k sigma sin^2 theta sin phi d theta d phi, \
d E_z eq -k sigma sin theta cos theta d theta d phi
$
Проинтегрировав по всей полусфере, получим:
$
E_x eq integral_0^(2 pi) integral_0^(pi/2) d E_x eq -sigma k integral_0^(pi/2) sin^2 theta d theta integral_0^(2 pi) cos phi d phi.
$
Так как $integral_0^(2 pi) cos phi d phi eq 0$, то $E_x eq 0$. (Аналогично $E_y eq 0$). Остается только $z$-компонента:
$
E_z eq E eq integral_0^(2 pi) integral_0^(pi / 2) d E_z eq - sigma k integral_0^(2 pi) d phi integral_0^(pi / 2) sin theta cos theta d theta eq k sigma dot (2 pi) dot 1/2 eq sigma/(4 epsilon_0).
$
Подставив числа, получим:
$
E eq frac(sigma, 4 epsilon_0) eq frac(5 dot 10^(-9), 4 dot 8.85 dot 10^(-12)) approx 141.2 "В/м" approx 0.14 "кВ/м".
$
*Ответ*: $E approx 0.14 "кВ/м"$.
#align(center)[===== №2]
Система представляет собой область пространства заполненного зарядом с объёмной плотностью $rho = rho_0 exp(-alpha r^3)$, где $rho_0$ и $alpha$ -- положительные постоянные, а $r$ -- расстояние от центра системы. Найти модуль напрёжённости электростатического поля, как функцию $r$.
*Решение*:
#align(center)[
#figure(
image("assets/2.svg"),
supplement: [Рис.],
caption: [Область пространства.]
) <img2>
]
По закону Гаусса:
$
integral.cont_S bold(E) dot d bold(S) eq frac(Q_"вн", epsilon_0)
$
Система обладает сферической симметрией.
$
E(r) 4 pi r^2 eq frac(Q_"вн" (r), epsilon_0) arrow.double E(r) eq frac(Q_"вн" (r), 4 pi epsilon_0 r^2)
$
Заряд внутри радиуса $r$:
$
Q_"вн" (r) eq integral_(V_r) rho(r') d V eq integral_0^r rho (r') 4 pi r^('2) d r' eq 4 pi rho_0 integral_0^r r^('2) e^(-alpha r')^3 d r'.
$
Пусть $u eq alpha r^('3)$.
$
d u eq 3 alpha r^('2) d r' arrow.double r^('2) d r' eq frac(d u, 3 alpha)
$
$
Q_"вн" (r) eq 4 pi rho_0 dot frac(1, 3 alpha) integral_0^(alpha r^3) e^(-u) d u eq frac(4 pi rho_0, 3 alpha) (1 - e^(-alpha r^3))
$
Подставим в закон Гаусса:
$
E(r) eq frac(rho_0, 3 epsilon_0 alpha r^2) (1 - e^(-alpha r^3))
$
*Ответ*: $E(r) eq frac(rho_0, 3 epsilon_0 alpha r^2) (1 - exp(-alpha r^3))$.
#align(center)[===== №3]
Система состоит из равномерно заряженного шара радиуса $R eq 20 "см"$. Рассчитать разность потенциалов между точками, лежащими на расстоянии $r_1 eq 1 "см"$ и $r_2 eq 15 "см"$ от центра шара. Объёмная плотность заряда $rho eq 10 " нКл/м"^3$. Диэлектрическая проницаемость вещества из которого состоит шар $epsilon = 1$.
*Решение*:
#align(center)[
#figure(
image("assets/3.svg"),
caption: [Шар.],
supplement: [Рис.]
) <img3>
]
Для $r lt.eq R$ используем закон Гаусса. Заряд, заключенный в сфере, радиуса $r$:
$
Q_"вн" eq rho dot 4/3 pi r^3.
$
Поток через сферу радиуса $r$ равен:
$
integral.cont bold(E) dot d bold(S) eq E(r) dot 4 pi r^2 eq frac(Q_"вн", epsilon_0).
$
Отсюда можно выразить $E(r)$:
$
E(r) eq frac(Q_"вн", 4 pi epsilon_0 r^2) eq frac(rho^(4/3) pi r^3, 4 pi epsilon_0 r^2) eq frac(rho r, 3 epsilon_0)
$
Потенциал определяется как:
$
phi(r_1) - phi(r_2) eq integral_(r_1)^(r_2) E(r) d r
$
Подставив $E(r) eq frac(rho r, 3 epsilon_0)$:
$
Delta phi eq phi(r_1) - phi(r_2) eq integral_(r_1)^(r_2) frac(rho r, 3 epsilon_0) d r eq frac(rho, 6 epsilon_0) (r^2_2 - r^2_1)
$
Подставив числа, получим:
$
Delta phi eq frac(10 dot 10^(-9), 6 dot 8.85 dot 10^(-12)) (0.15^2 - 0.01^2) "В" approx 4.2 "В".
$
*Ответ*: $Delta phi approx 4.2 "B"$.
#align(center)[===== №4]
Зазор между пластинами плоского конденсатора полностью плоская слюдяная пластинка ($epsilon_1 eq 7$) толщиной $d_1 eq 2 "мм"$, и слой парафина ($epsilon_1 eq 2$) толщиной $d_2 eq 1 "мм"$. Рассчитать модули напряжённости электрического поля в обоих диэлектриках, если разность потенциалов между пластинами $U eq 200 В$.
*Решение*:
#align(center)[
#figure(
image("assets/4.png"),
supplement: [Рис.],
caption: [Конденсатор.]
) <img4>
]
При статическом поле в плоском конденсаторе нормальная компонента вектора электрической индукции $bold(D)$ одинакова во всех слоях:
$
D eq epsilon_0 epsilon_(r 1) E_1 eq epsilon_0 epsilon_(r 2) E_2.
$
Отсюда получаем связь между полями:
$
epsilon_(r 1) E_1 eq epsilon_(r 2) E_2 arrow.double E_1 eq frac(epsilon_(r 2), epsilon_(r 1)) E_2.
$
Общая разность потенциалов $U$ равна:
$
U eq E_1 d_1 + E_2 d_2.
$
Подставив $E_1 eq frac(epsilon_(r 2), epsilon_(r 1)) E_2$, получим:
$
U eq frac(epsilon_(r 2), epsilon_(r 1)) E_2 d_1 + E_2 d_2 eq E_2(frac(epsilon_(r 2), epsilon_(r 1)) d_1 + d_2)
$
Выражая $E_2$ и $E_1$:
$
E_2 eq frac(U, frac(epsilon_(r 2), epsilon_(r 1)) d_1 + d_2), space.quad E_1 eq frac(epsilon_(r 2), epsilon_(r 1)) E_2.
$
Подставим числа из условия:
$
E_1 approx 3.64 dot 10^4 "В/м" approx 36.4 "кВ/м", E_2 approx 1.27 dot 10^5 "В/м" approx 0.127 "МВ/м".
$
*Ответ*: $E_1 approx 36 "кВ/м", E_1 approx 0.13 "МВ/м"$.
#align(center)[===== №5]
На расстоянии $l eq 1.5 "см"$ от проводящей плоскости расположен точечный заряд $q eq 100 "мкКл"$. Рассчитайте работу, которую необходимо совершить против электрических сил, чтобы медленно удалить этот заряд от плоскости на бесконечность.
*Решение*:
#align(center)[
#figure(
image("assets/5.svg"),
supplement: [Рис.],
caption: [Схема с проводящей плоскостью и зарядами.]
) <img5>
]
В системе СИ: $l eq 1.5 "см" eq 0.015 "м", space q eq 100 "мкКл" eq 1.0 dot 10^(-4) "Кл"$.
Реальный заряд $q$ находится на расстоянии $l$ от плоскости, а мнимый заряд $q' eq -q$ находится на расстоянии $l$ по другую сторону плоскости. Тогда обозначим за $r eq 2 l eq 0.03 "м"$.
Потенциальная энергия взаимодействия двух зарядов $U$ равна:
$
U eq k frac(q q', r) eq -k frac(q^2, 2 l)
$
Чтобы удалить заряд в бесконечность, нужно сделать работу $A$:
$
A eq -U eq k frac(q^2, 2 l)
$
Подставив числа, получим:
$
A approx 0.15 dot 10^3 "Дж"
$
*Ответ*: $A approx 0.15 dot 10^3 "Дж"$.
#align(center)[===== №6]
По прямому проводнику длина которого $l eq 400 "м"$ течёт постоянный ток, сила которого $I eq 10 "А"$. Рассчитать суммарный импульс электронов в проводнике.
*Решение*:
#align(center)[
#figure(
image("assets/6.png"),
supplement: [Рис.],
caption: [Проводник с током.]
) <img6>
]
Пусть $v_d$ - дрейфовая скорость электронов. Тогда импульс всех электронов $p$ равен:
$
p eq M v_d
$
где $M$ - суммарная масса всех электронов в проводнике.
За время $Delta t$ электроны сдвигаются вдоль провода на расстояние:
$
Delta x eq v_d Delta t.
$
Тогда объем, прошедший через сечение:
$
V eq S Delta x eq S v_d Delta t.
$
Если $n$ - концентрация свободных электронов на метр кубический, то:
$
N eq n V eq n S v_d Delta t
$
это число электронов, прошедших через сечение. Каждый электрон имеет заряд $e$ по модулю, поэтому полный заряд $Delta Q$:
$
Delta Q eq N e eq n e S v_d Delta t.
$
По определению силы тока:
$
I eq frac(Delta Q, Delta t) eq frac(n e S v_d Delta t, Delta t) eq n e S v_d.
$
Пусть площадь сечения - $S$. Тогда объем $V$ равен:
$
V eq S l
$
и число электронов $N$:
$
N eq n V eq n S l.
$
Выразив дрейфовую скорость из $I eq n e S v_d$, получим:
$
v_d eq frac(I, n e S)
$
Тогда, подставив это в $p eq N m_e v_d$:
$
p eq N m_e v_d eq (n S l) m_e dot frac(I, n e S) eq frac(m_e I l, e)
$
Подставим числа и получим:
$
p eq frac(3.644 dot 10^(-27), 1.6 dot 10^(-19)) approx 2.28 dot 10^(-8) "Н/c"
$
*Ответ*: $p eq 2.3 dot 10^(-8) "Н/с"$.
#align(center)[=== Магнитостатика. Закон электромагнитной индукции Фарадея.]
#align(center)[===== №1]
Замкнутый контур с током имеет вид прямоугольника с диагональю $d eq 16 "см"$, угол между диагоналями $alpha eq 30 degree$. Сила тока, протекающего по контуру $I eq 5 "A"$. Рассчитать модуль индукции магнитного поля в центре контура.
*Решение*:
#align(center)[
#figure(
image("assets/7.png"),
supplement: [Рис.],
caption: [Прямоугольный контур с током и его центр.]
) <img7>
]
В системе СИ: $d eq 16 "см" eq 0.16 "м"$. Обозначим стороны прямоугольника $a$ и $b$, тогда длина диагонали $d$ равна:
$
d eq sqrt(a^2 + b^2).
$
Угол между диагоналями $alpha$ выражается через $a$ и $b$. Для векторов диагоналей $bold(d)_1 eq (a, b), bold(d)_2 eq (a, -b)$ получим:
$
cos alpha eq frac(bold(d)_1 dot bold(d)_2, |bold(d)_1||bold(d)_2|) eq frac(a^2 - b^2, a^2 + b^2)
$
или
$
b/a eq tan alpha/2
$
Отсюда:
$
a eq d cos alpha/2, space.quad b eq d sin alpha/2
$
$
a eq d cos 15 degree, space.quad b eq d sin 15 degree
$
По закону Био-Савара:
$
d B eq frac(mu_0 I, 4 pi) frac(d l sin phi, r^2),
$
где $d l$ - элемент проводника, $r$ - расстояние до точки наблюдения, $phi$ - угол между направлением тока и направлением на точку наблюдения. Проводник лежит вдоль оси $x$, точка наблюдения на оси $y$. Тогда расстояние $r eq sqrt(x^2 + y^2)$.
Угол $phi$ между током и направлением на точку:
$
sin phi eq frac(y, sqrt(x^2 + y^2)) eq y/r
$
После подстановки в закон Био-Савара:
$
d B eq frac(mu_0 I, 4 pi) frac(d x, (x^2 + y^2)) dot frac(y, sqrt(x^2 + y^2)) eq frac(mu_0 I, 4 pi) frac(y d x, (x^2 + y^2)^(3/2)).
$
проинтегрировав по длине проводника:
$
B eq frac(mu_0 I, 4 pi) y integral_(x_A)^(x_B) frac(d x, (x^2 + y^2)^(3/2)) eq frac(mu_0 I, 4 pi y) (frac(x_B, sqrt(x^2_B + y^2)) - frac(x_A, sqrt(x^2_A + y^2)))
$
Обозначим углы до концов проводника:
$
cos theta_1 eq frac(x_A, sqrt(x_A^2 + y^2)), space.quad cos theta_2 eq frac(x_B, sqrt(x_B^2 + y^2))
$
тогда
$
B eq frac(mu_0 I, 4 pi y) (cos theta_2 - cos theta_1).
$
По формуле разности косинусов:
$
cos theta_2 - cos theta_1 eq 2 sin frac(theta_2 + theta_1, 2) sin frac(theta_2 - theta_1, 2)
$
Но в точке на перпендикуляре можно возпользоваться более простым выражением:
$
cos theta_2 - cos theta_1 eq sin theta_1 + sin theta_2
$
Так как точка находится напротив середины проводника, то $theta_1 eq theta_2 eq theta$. Тогда:
$
B eq frac(mu_0 I, 2 pi y) sin theta
$
Для симметричного случая можно расписать $sin theta$ как:
$
sin theta eq frac(L/2, sqrt((L/2)^2 + y^2)).
$
Для отрезка длины $L$ на расстоянии $y$ от его середины:
$
B_"отр" eq frac(mu_0 I L, 4 pi y sqrt((L/2)^2 + y^2)).
$
Сумма вкладов двух противоположных сторон длины $a$:
$
B_a^"sum" eq 2 dot frac(mu_0 I a, 4 pi (b/2) sqrt((a/2)^2 + (b/2)^2)) eq frac(mu_0 I a, pi b sqrt((a/2)^2 + (b/2)^2))
$
Аналогично для сторон длины $b$:
$
B_b^"sum" eq frac(mu_0 I b, pi a sqrt((a/2)^2 + (b/2)^2))
$
Сложив, получим:
$
B eq B_a^"sum" + B_b^"sum" eq frac(mu_0 I, pi sqrt((a/2)^2 + (b/2)^2)) (a/b + b/a) eq frac(mu_0 I, pi d/2) (a/b + b/a) eq \
eq frac(2 mu_0 I, pi d) (a/b + b/a) eq frac(2 mu_0 I, pi d) frac(2, sin alpha) eq frac(4 mu_0 I, pi d sin alpha)
$
Подставив числа, получим:
$
B eq frac(4(4 pi dot 10^(-7)) dot 5, pi dot 0.16 dot 0.5) approx 1.0 dot 10^(-4) "Т" eq 0.1 "мТ".
$
*Ответ*: $B approx 0.1 "мТл"$.
#align(center)[===== №2]
Два бесконечных прямых параллельных проводника разделены расстоянием $d eq 20 "см"$. По проводникам в противоположных направлениях текут токи $I_1 eq I_2 eq 10 "А"$. Рассчитать модуль напряжённости магнитного поля в точке, равноудалённой от обоих проводников на расстояние $a eq 20 "см"$.
*Решение*: хз
#align(center)[
#figure(
image("assets/9.png"),
supplement: [Рис.],
caption: [Два параллельных проводника с противоположными токами.]
) <img9>
]
*Ответ*: $H approx 8 "А/м"$.
#align(center)[===== №3]
По проводу бесконечной длины, имеющего форму цилиндра радиуса $R$ течёт постоянный ток, плотность которого зависит от расстояния до центра провода как $j eq alpha r bold(e)_z$. Рассчитать вектор магнитной индукции создаваемый током внутри и вне провода, как функцию $r$ (магнитная проницаемость всюду равна 1).
*Решение*:
#align(center)[
#figure(
image("assets/8.svg"),
supplement: [Рис.],
caption: [Цилиндрический провод с током вдоль оси.]
) <img8>
]
Для осесимметричного распределения удобно взять круговой контур радиуса $r$, с центром на оси цилиндра. Интеграл по контуру:
$
integral.cont bold(B) dot d bold(l) eq B_phi (r) (2 pi r)
$
Закон Ампера:
$
integral.cont bold(B) dot d bold(l) eq mu_0 I_"вн" (r)
$
где $I_"вн" (r)$ - суммарный ток, пронизывающий поверхность, ограниченную контуром.
Отсюда:
$
B_phi (r) eq frac(mu_0, 2 pi r) I_"вн" (r)
$
Ток через круг радиуса $r$:
$
I_"вн" (r) eq integral.double_S_r j_z (r') d S eq integral_0^r integral_0^(2 pi) (alpha r') r' d phi d r'
$
$
I_"вн" (r) eq alpha dot 2 pi integral_0^r r^('2) d r' eq alpha dot 2 pi dot frac(r^3, 3) eq frac(2 pi alpha r^3, 3).
$
Магнитная индукция внутри $r lt R$:
$
B_phi (r) eq frac(mu_0, 2 pi r) dot frac(2 pi alpha r^3, 3) eq frac(mu_0 alpha r^2, 3).
$
Магнитная индукция снаружи $r gt R$:
$
I eq I_"вн" (R) eq frac(2 pi alpha R^3, 3).
$
По закону Ампера для $r gt R$:
$
B_phi (r) eq frac(mu_0 I, 2 pi r) eq frac(mu_0, 2 pi r) dot frac(2 pi alpha R^3, 3) eq frac(mu_0 alpha R^3, 3 r)
$
*Ответ*: $bold(B) (r lt R) eq frac(mu_0 alpha r^2, 3) bold(e)_phi, space bold(B) (r gt R) eq frac(mu_0 alpha R^3, 3 r) bold(e)_phi$.
#align(center)[===== №4]
В однородное магнитное поле с магнитной индукцией $B eq 0.4 "Тл"$ перпендикулярно полю с постоянной скоростью влетает заряженная частица. В течении $6 "мкс"$ включается постоянное электрическое поле напряжённостью $E eq 300 "В/м"$ сонаправленно магнитному полю. Рассчитать шаг винтовой траектории частицы после выключения электрического поля.
*Решение*: По формуле силы Лоренца:
$
bold(F) eq q(bold(E) + bold(v) times bold(B))
$
До включения электрического поля:
$
bold(E) eq 0, space.quad bold(F) eq q(bold(v) times bold(B))
$
Поскольку $bold(b) perp bold(B)$, частица движется по окружности
$
F_"маг" = q v b.
$
Сила Лоренца равна центростремительной силе:
$
q v B eq frac(m v^2, R) arrow.double R eq frac(m v, q B)
$
Угловая частота:
$
omega eq v/R eq frac(q B, m)
$
Когда включается электрическое поле вдоль магнитного поля, на частицу вдоль $B$ действует $F eq q E$. Соответственно вдоль оси $B$ ускорение $a eq frac(q E, m)$.
За время $Delta t$ скорость вдоль оси становится:
$
v eq a Delta t eq frac(q E, m) Delta t
$
После выключения электрического поля частица летит в магнитном поле с постоянной перпендикулярной скоростью и параллельной, то есть по винтовой траектории.
Расстояние за один оборот:
$
h eq v T,
$
где $T eq frac(2 pi, omega) eq frac(2 pi m, q B)$ - период кругового движения.
Подставим:
$
h eq v T eq frac(q E, m) Delta t dot frac(2 pi m, q B) eq frac(2 pi E Delta t, B)
$
Подставим числа:
$
h eq frac(2 pi dot 300 "В/м" dot 6 dot 10^(-6) "с", 0.4 "Тл") approx 0.28 "м".
$
*Ответ*: $h eq 0.28 "м"$.
#align(center)[===== №5]
Квадратная рамка со стороной $a eq 70 "см"$ помещена в магнитное поле так, что нормаль к рамке составляет угол $alpha eq 45 degree$ с направлением магнитного поля. Индукция магнитного поля меняется по закону $B eq B_0 cos omega t$, где $B_0 eq 0.2 "Тл", omega eq 6 " с"^(-1)$. Рассчитать ЭДС индукции, возникающей в рамке в момент времени $t eq 3 "с"$.
*Решение*:
#align(center)[
#figure(
image("assets/10.png"),
supplement: [Рис.],
caption: [Квадратная рамка в переменном магнитном поле.]
)
]
ЭДС индукции определяется законом Фарадея:
$
cal(E) eq -frac(d Phi, d t)
$
где $Phi$ - магнитный поток через рамку:
$
Phi eq bold(B) dot bold(S) eq B S cos alpha
$
Площадь рамки $S eq a^2$, $alpha$ - угол между вектором магнитной индукции и нормалью к рамке.
Магнитный поток через рамку:
$
Phi(t) eq B(t) S cos alpha eq B_0 cos (omega t) dot a^2 cos alpha
$
$
cal(E) eq -frac(d Phi, d t) eq -frac(d, d t) [B_0 a^2 cos alpha cos(omega t)] eq -B_0 a^2 cos alpha frac(d, d t) cos(omega t) \
eq -B_0 a^2 cos alpha dot (-omega sin (omega t)) eq B_0 a^2 omega cos alpha sin(omega t)
$
Подставляем числа:
$
cal(E) eq 0.2 dot (0.7)^2 dot 6 dot cos 45 degree dot sin(6 dot 3) approx -0.31 "В"
$
*Ответ*: $epsilon eq -0.31 "В"$.
#align(center)[===== №6]
Плотность витков в катушке $n eq 25 " см"^(-1)$. Рассчитать объёмную плотность энергии магнитного поля в катушке при токе $I eq 2 "А"$.
*Решение*: В системе СИ: $n eq 25 " см"^(-1) eq 2500 " м"^(-1)$.
По закону Ампера:
$
integral.cont bold(B) dot d bold(l) eq mu_0 I_"внутри"
$
Возьмем прямоугольный контур. Одна сторона внутри катушки длиной $l_"внутри"$, другая снаружи. Магнитное поле внутри $bold(B) dot d bold(l) eq B l_"внутри"$. Ток, охваченный контуром: $I_"внутри" eq I dot N_"охваченных витков" eq I n l_"внутри"$. Подставив в закон Ампера, получим:
$
B l_"внутри" eq mu_0 (n I l_"внутри") arrow.double B eq mu_0 n I.
$
Энергия магнитного поля катушки:
$
W eq 1/2 L I^2,
$
где $L$ - индуктивность катушки.
По определению индуктивности:
$
L eq frac(Phi, I),
$
где $Phi$ - магнитный поток через катушку.
Магнитный поток через все витки равен:
$
Phi eq N dot B dot S,
$
где $N$ - число витков, $S$ - площадь поперечного сечения, $B$ - магнитное поле внутри катушки.
$
L eq frac(N B S, I).
$
Объем катушки $V eq S l$, число витков $N eq n l$. Подставим:
$
L eq frac(n l B S, I) eq frac(B n S l, I).
$
Тогда энергия равна:
$
W eq 1/2 L I^2 eq 1/2 frac(B n S l, I) I^2 eq 1/2 B n I S l
$
Объемная плотность энергии $w$ равна:
$
w eq W/V eq frac(1/2 B n I S l, S l) eq 1/2 B n I
$
Подставим $B eq mu_0 n I$:
$
w eq 1/2 (mu_0 n I) n I eq 1/2 mu_0 n^2 I^2
$
Подставим числа:
$
w eq 1/2 4 pi dot 10^(-7) dot (2500)^2 dot 2^2 eq 2 pi dot 10^(-7) dot 6.25 dot 10^6 dot 4 approx 16 " Дж/м"^3
$
*Ответ*: $omega approx 16 " Дж/м"^3$.