

Курс Java. Тестовое задание. Описание задачи.

Утилита фильтрации содержимого файлов.   

При запуске утилиты в командной строке подается несколько файлов,
содержащих в перемешку целые числа, строки и вещественные числа. В качестве
разделителя используется перевод строки. Строки из файлов читаются по
очереди в соответствии с их перечислением в командной строке.

 
Задача утилиты записать разные типы данных в разные файлы. Целые числа в
один выходной файл, вещественные в другой, строки в третий. По умолчанию
файлы с результатами располагаются в текущей папке с именами integers.txt,
floats.txt, strings.txt. Дополнительно с помощью опции -o нужно уметь задавать
путь для результатов. Опция -p задает префикс имен выходных файлов.
Например -o /some/path -p result_ задают вывод в файлы
/some/path/result_integers.txt, /some/path/result_strings.txt и тд.
 
По умолчанию файлы результатов перезаписываются. С помощью опции -a
можно задать режим добавления в существующие файлы. 
 
Файлы с результатами должны создаваться по мере необходимости. Если какого-
то типа данных во входящих файлах нет, то и создавать исходящий файл,
который будет заведомо пустым, не нужно. 
 
В процессе фильтрации данных необходимо собирать статистику по каждому типу
данных. Статистика должна поддерживаться двух видов: краткая и полная. Выбор
статистики производится опциями -s и -f соответственно. Краткая статистика
содержит только количество элементов записанных в исходящие файлы. Полная
статистика для чисел дополнительно содержит минимальное и максимальное
значения, сумма и среднее. Полная статистика для строк, помимо их количества,
содержит также размер самой короткой строки и самой длинной. 
 
Статистику по каждому типу отфильтрованных данных утилита должна вывести в
консоль.  
Все возможные виды ошибок должны быть обработаны. Программа не должна
«падать». Если после ошибки продолжить выполнение невозможно, программа
должна сообщить об этом пользователю с указанием причины неудачи. Частичная
обработка при наличии ошибок более предпочтительна чем останов программы.
Код программы должен быть «чистым».
 
Для реализации необходимо использовать язык программирования Java,
допустимо использовать стандартные системы сборки проекта (Maven, Gradle)
Решение принимается в виде исходного кода проекта. 

К решению должна прилагаться инструкция по запуску. В ней можно отображать
особенности реализации, не уточненные в задании. В частности, в инструкции
необходимо указывать:

• версию Java;
• при использовании системы сборки – указать систему сборки и ее версию;
• при использовании сторонних библиотек указать их название и версию, а также

приложить ссылки на такие библиотеки (можно в формате зависимостеий
системы сборки).  

Пример входного файла in1.txt 
Lorem ipsum dolor sit amet
45 
Пример 
3.1415 
consectetur adipiscing
-0.001 
тестовое задание 
100500

Пример входного файла in2.txt
Нормальная форма числа с плавающей запятой 
1.528535047E-25
Long  
1234567890123456789

Пример запуска утилиты   
java -jar uXl.jar -s -a -p sample- in1.txt in2.txt
   
sample-integers.txt 
45
100500
1234567890123456789  

sample-floats.txt 
3.1415
-0.001
1.528535047E-25
 
sample-strings.txt 
Lorem ipsum dolor sit amet
Пример
consectetur adipiscing
тестовое задание
Нормальная форма числа с плавающей запятой
Long  
   

